
时间序列分析及应用
《时间序列分析及应用》这本书的解读和思考
nju_spy
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
时间序列分析及应用 第五章 非平稳时间序列模型 + ARIMA
否则e系数指数爆炸。需要对序列进行差分操作,平稳化。原创 2025-07-07 11:51:03 · 640 阅读 · 0 评论 -
时间序列分析及应用 第四章 平稳时间序列模型 ARMA
无穷级数 权重加条件系数等比数列情形k阶协方差前瞻一下后面的主要内容。原创 2025-07-06 23:50:42 · 366 阅读 · 0 评论 -
时间序列分析及应用 第二章
本文探讨了时间序列分析中的基本概念,包括期望、方差、协方差的计算方法。通过随机游动和滑动平均两个典型实例,阐述了不同时间序列模型的特点。重点区分了严平稳与弱平稳的定义差异,严平稳要求所有统计特性相同,而弱平稳仅需均值、方差和协方差稳定。文中还分析了白噪声作为特殊平稳序列的特性。这些概念为时间序列建模和预测奠定了理论基础。原创 2025-07-05 11:46:40 · 124 阅读 · 0 评论 -
时间序列分析及应用 第三章 确定趋势
均值估计量的方差实际上随样本容量n的增加而增大 这样的估计是不可接受的。12个月所以f=12 估算1月份,由正余弦的正交 独立性。例 某城市月平均气温:对每年的这个月的数据 取平均。余弦模型 比季节均值模型 参数估计的方差小很多。比较白噪声 以及 只有。原创 2025-07-06 17:58:25 · 274 阅读 · 0 评论