基于CNN深度学习的小程序识别2-视频介绍下自取

基于深度学习的柑橘品级分类小程序版本

074基于深度学习的柑橘品级分类小程序版本_哔哩哔哩_bilibili

基于python语言,pytorch框架下运行,代码包括数据集和训练部分,训练好的模型通过flask与本地电脑上的微信开发者者工具上小程序进行传输图片,交互识别结果。

环境安装可以参考深度学习小程序版环境安装-CSDN博客

基于python目标检测的小程序交互+田间杂草检测

055基于python目标检测的小程序交互+田间杂草检测_哔哩哔哩_bilibili

基于python语言,pytorch框架下运行,代码包括数据集和训练部分,训练好的模型通过flask与本地电脑上的微信开发者者工具上小程序进行传输图片,交互识别结果。

基于深度学习识别中药饮片小程序

036-037基于深度学习识别中药饮片小程序_哔哩哔哩_bilibili

基于python语言,pytorch框架下运行,代码包括数据集和训练部分,训练好的模型通过flask与本地电脑上的微信开发者者工具上小程序进行传输图片,交互识别结果。

中草药识别小程序

009中草药识别小程序_哔哩哔哩_bilibili

基于python语言,pytorch框架下运行,代码包括数据集和训练部分,训练好的模型通过flask与本地电脑上的微信开发者者工具上小程序进行传输图片,交互识别结果。

基于python深度学习的水果或其他物体识别小程序

https://www.bilibili.com/video/BV1Ga4y1w7Vy/?vd_source=21f7017bed799deec1dbbb3e546d5025

基于python语言,pytorch框架下运行,代码包括数据集和训练部分,训练好的模型通过flask与本地电脑上的微信开发者者工具上小程序进行传输图片,交互识别结果。

文章摘要:本文介绍了多个基于Python和PyTorch框架的深度学习物体识别小程序开发案例,包括柑橘品级分类、田间杂草检测、中药饮片识别等。这些项目采用统一的技术架构:使用PyTorch训练模型,通过Flask搭建本地服务器,实现与微信小程序的图片传输和结果交互。所有案例均包含数据集、模型训练和小程序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值