1. 研究背景与挑战
- 核心问题:长期时间序列预测需同时捕捉全局/局部相关性(Global-local Semantic Information)和长/短期重复模式(Periodic Semantic Information),但现有方法无法兼顾两者且计算效率低。
- 现有方法局限:
- RNN类(如LSTM/GRU):能建模序列依赖但存在梯度消失/爆炸和信息遗忘问题(附录B验证)。
- CNN类:受限于感受野大小,难以捕获长周期模式。
- Transformer类:点积注意力机制难以提取深层语义信息,且复杂度高(如Transformer为O(L²))。
- 关键挑战:如何在低复杂度下(O(√L)时间 + O(L)内存)同时建模多尺度语义信息。
2. 核心创新:WITRAN模型
(1)水波信息传输框架(WIT)
- 输入重组(图2a):
- 按自然周期将1D序列