1. 研究背景与问题
- 工业故障检测的重要性:智能诊断可预防关键设备意外故障,保障工业连续运行。
- 现有方法的局限:
- 传统声学信号故障检测方法泛化能力不足,易过拟合源设备特征。
- 难以捕捉跨设备故障检测所需的域不变特征。
- 工业设备数据分布差异大(设备异构性、背景噪声干扰),导致模型迁移性能下降。
2. 核心贡献:多级特征编码器(MLFE)
提出一种基于迁移学习的声学信号故障检测框架,包含以下创新点:
-
频率掩码技术
- 通过低通滤波(保留前 N^ 个频率分量)过滤高频噪声。
- 时间复杂度 O(N),空间复杂度 O(1),计算高效。
- 示例效果:
-
多级特征工程
- 时域特征:位移差 Dij、速度差 Vij、加速度差 Aij。
- 频域特征:傅里叶变换后提取统计特征(均值、标准差、MAD、能量、熵