基于多级特征编码器用于声学信号故障检测模型

「开学季干货」:聚焦知识梳理与经验分享 2.5w人浏览 64人参与

1. 研究背景与问题

  • 工业故障检测的重要性​:智能诊断可预防关键设备意外故障,保障工业连续运行。
  • 现有方法的局限​:
    • 传统声学信号故障检测方法泛化能力不足,易过拟合源设备特征。
    • 难以捕捉跨设备故障检测所需的域不变特征。
    • 工业设备数据分布差异大(设备异构性、背景噪声干扰),导致模型迁移性能下降。


2. 核心贡献:多级特征编码器(MLFE)​

提出一种基于迁移学习的声学信号故障检测框架,包含以下创新点:

  1. 频率掩码技术

    • 通过低通滤波(保留前 N^ 个频率分量)过滤高频噪声。
    • 时间复杂度 O(N),空间复杂度 O(1),计算高效。
    • 示例效果:
  2. 多级特征工程

    • 时域特征​:位移差 Dij​、速度差 Vij​、加速度差 Aij​。
    • 频域特征​:傅里叶变换后提取统计特征(均值、标准差、MAD、能量、熵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值