CSP复赛提高组知识点(1)-图论(下)

    图论是历年信息学复赛考点之一。今天我们来带大家复习一下图论相关知识!

图论

六、最短路径:

1.Floyd算法(插点法):
通过一个图的权值矩阵求出它的每两点间的最短路径(多源最短路)。
算法描述:
一个十分暴力又经典的DP,假设i到j的路径有两种状态:
①i和j直接有路径相连:在这里插入图片描述
②i和j间接联通,中间有k号节点联通:在这里插入图片描述
假设dis[i][j]表示从i到j的最短路径,对于存在的每个节点k,我们检查一遍dis[i][k]+dis[k][j]。

//Floyd算法,时间复杂度:O(n^3)
//Floyd算法,时间复杂度:O(n^3)
int dis[MAXN][MAXN];
for(k=1;k<=n;k++)//枚举
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);//DP
}
}
}
2.Dijkstra算法(无向图,无负权边):

算法描述:
多源最短路!

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
啊~上面的的乱七八糟的概念太难懂了,还是举个例子吧!如下图!
在这里插入图片描述
我们假设1号节点为原点。
第一轮,我们可以算出2,3,4,5,6号节点到原点1的距离为[7,9,∞,∞,14],∞表示无穷大(节点间无法直接连通),取其中最小的7,就确定了1->1的最短路径为0,1->2的最短路径为7,同时取最短路径最小的2节点为下一轮的前驱节点。
第二轮,取2节点为前驱节点,按照 前驱节点到原点的最短距离 + 新节点到前驱节点的距离 来计算新的最短距离,可以得到3,4,5,6号节点到原点1的距离为[17,22,∞,∞](新节点必须经过2号节点回到原点),这时候需要将新结果和上一轮计算的结果比较,3号节点:17>9

CSP信息学奥林匹克竞赛复赛知识点非常广泛,涵盖了计算机科学和算法设计的各个领域。以下是一些常见的CSP复赛知识点1. 数据结构:熟悉数、链表、栈、队列、树、图等数据结构的原理和应用。能够快速选择和实现合适的数据结构来解决问题。 2. 算法设计与分析:掌握基本的算法设计方法,如贪心算法、分治算法、动态规划算法、回溯算法等。了解算法的时间复杂度和空间复杂度分析方法。 3. 图论:熟悉图的基本概念和常见算法,如最短路径算法(Dijkstra算法、Floyd-Warshall算法等)、最小生成树算法(Prim算法、Kruskal算法等)、网络流算法(最大流最小割定理、Ford-Fulkerson方法等)。 4. 字符串处理:熟练掌握字符串的基本操作,并能够应用字符串匹配算法(KMP算法、Boyer-Moore算法等)解决相关问题。 5. 动态规划:了解动态规划的基本思想和应用场景,能够分析并设计动态规划算法来解决问题。 6. 排序与查找:掌握常见的排序算法(如冒泡排序、快速排序、归并排序等)和查找算法(如二分查找、哈希表等)的原理和应用场景。 7. 数学知识:了解离散数学、概率论和合数学等数学知识,能够将数学方法应用到算法设计中。 8. 算法竞赛技巧:熟悉算法竞赛中常见的问题解题技巧,如递归、分治、二分、模拟、枚举、贪心、搜索、优化等。 在CSP复赛中,不仅需要掌握上述知识点,还需要具备解决难题的思维能力、编程实现能力以及分析和优化算法的能力。通过不断的练习和实践,可以提高自己的算法编程水平,取得好成绩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值