循环闭合与三维模型校正
1. 环闭检测的重要性
在场景重建过程中,三维地图是逐步生成的。随着摄像机的移动,场景中的不同部分被逐步添加到模型中。然而,由于摄像机姿态和地图估计的漂移,模型中可能会出现偏差。环闭检测(Loop Closure Detection)可以帮助我们识别摄像机重新访问已调查过区域的情况,从而提供额外的约束,减少这些偏差。
环闭检测是视觉导航和地图构建中的关键步骤。它不仅能减少漂移误差,还能提高模型的一致性和准确性。例如,当机器人在一个环形路径中移动时,环闭检测可以识别路径的起点和终点,从而将模型中的重复部分合并,减少误差累积。
2. 环闭检测示例
环闭检测的一个实际例子是使用在线视觉词汇(Online Visual Vocabulary, OVV)来识别帧之间的相似性。例如,在一个实验中,OVV检测到了第31帧和第180帧之间的环闭合(如图1所示)。这表明这两帧图像对应于场景中的同一区域,尽管它们在时间上相隔较远。
图1. 环闭检测示例
使用OVV,检测到第31帧和第180帧之间的环闭合。
3. 模型修正前后的表示
在检测到环闭合之前,模型中可能存在重复表示同一场景区域的情况。例如,图2展示了模型修正前后的表示。在修正之前,交叉点对应的场景区域在模型中被表示了两次,分别对应于帧31和180的子集。这种重复表示会导致模型中的冗余和不一致性。