pytorch中GPU的使用

本文介绍了如何在PyTorch中利用GPU进行数据运算,包括CPU与GPU的区别,数据迁移至GPU的方法如使用to函数,以及torch.cuda的常用方法如device_count、get_device_name等。此外,还探讨了多GPU并行运算的机制,特别是DataParallel的使用,以实现模型的分发并行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


该篇笔记主要来自余庭嵩的讲解

CPU与GPU

CPU:中央处理器,主要包括控制器和运算器
GPU:图形处理器,处理统一的,无依赖的大规模数据运算
在这里插入图片描述
上图描述的就是CPU和GPU的内部结构,图来自于余庭嵩的讲解。
计算机在运算的时候,CPU上面的数据是不能和GPU上面的数据直接进行运算的,所以在代码中需要把数据搬到同一个地方进行运算。怎么搬?pytorch中给出了相当方便的函数,就是to函数

数据迁移至GPU

to函数既可以转换数据类型,也可以转换设备,其使用实例如下,首先定义设备

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

然后测试一下to函数,先看看张量的to函数

x_cpu = torch.ones((3, 3))
print("x_cpu:\ndevice: {} is_cuda: {} id: {}".format(x_cpu.device, x_cpu.is_cuda, id(x_cpu)))

x_gpu = x_cpu.to(device)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值