学习目标:
- 动态规划
- 滑动窗口
内容:
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-cooldown
示例 1:
输入: prices = [1,2,3,0,2] 输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1] 输出: 0
提示:
1 <= prices.length <= 5000
0 <= prices[i] <= 1000
代码
方法一:动态规划
public int maxProfit(int[] prices) {
if (prices == null || prices.length == 0) return 0;
// dp[i][0/1/2] 第i天各个状态的最大值
// 0 未持有且非冷冻期 <- 0、1
// 1 未持有但冷冻期(i-1天卖了) <- 2
// 2 持有 <- 0、2
int n = prices.length;
int[][] dp = new int[n][3];
//初始化
//dp[0][0] = 0;
//dp[0][1] = 0;
dp[0][2] = -prices[0];
for (int i = 1; i < n; ++i) {
dp[i][0] = Math.max(dp[i - 1][1], dp[i - 1][0]);
dp[i][1] = dp[i - 1][2] + prices[i];
dp[i][2] = Math.max(dp[i - 1][0] - prices[i], dp[i - 1][2]);
}
return Math.max(dp[n - 1][0], dp[n - 1][1]);
}
方法二:滑动窗口
//滑动窗口(只与前一天有关)
public int maxProfit(int[] prices) {
if (prices == null || prices.length == 0) return 0;
// dp[i][0/1/2] 第i天各个状态的最大值
// 0 未持有且非冷冻期 <- 0、1
// 1 未持有但冷冻期(i-1天卖了) <- 2
// 2 持有 <- 0、2
int n = prices.length;
int dp0 = 0, dp1 = 0, dp2 = -prices[0];
for (int i = 1; i < n; ++i) {
//dp[i][0] = Math.max(dp[i - 1][1], dp[i - 1][0]);
int nextDp0 = Math.max(dp1, dp0);
//dp[i][1] = dp[i - 1][2] + prices[i];
int nextDp1 = dp2 + prices[i];
//dp[i][2] = Math.max(dp[i - 1][0] - prices[i], dp[i - 1][2]);
int nextDp2 = Math.max(dp0 - prices[i], dp2);
//保证数据不被覆盖再赋值
dp0 = nextDp0;
dp1 = nextDp1;
dp2 = nextDp2;
}
return Math.max(dp0, dp1);
}
总结:
能否使用滑动窗口解题主要看转换关系是否满足 dp[i][...]只与dp[i-1][...]有关