LeetCode309. 最佳买卖股票时机含冷冻期

文章介绍了如何使用动态规划和滑动窗口算法解决LeetCode上的股票交易问题,目标是计算在特定约束下(包括卖出后一天不能买入)的最大利润。提供了两种方法的代码实现,分别是基于二维数组的动态规划和简化后的滑动窗口方法,关键在于状态转移只依赖于前一天的状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习目标:

  • 动态规划
  • 滑动窗口

内容:

给定一个整数数组prices,其中第  prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-cooldown

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

示例 2:

输入: prices = [1]
输出: 0

提示:

  • 1 <= prices.length <= 5000
  • 0 <= prices[i] <= 1000

代码

方法一:动态规划

public int maxProfit(int[] prices) {
    if (prices == null || prices.length == 0) return 0;
    // dp[i][0/1/2] 第i天各个状态的最大值
    // 0 未持有且非冷冻期 <- 0、1
    // 1 未持有但冷冻期(i-1天卖了) <- 2
    // 2 持有 <- 0、2

    int n = prices.length;
    int[][] dp = new int[n][3];

    //初始化
    //dp[0][0] = 0;
    //dp[0][1] = 0;
    dp[0][2] = -prices[0];
    for (int i = 1; i < n; ++i) {
        dp[i][0] = Math.max(dp[i - 1][1], dp[i - 1][0]);

        dp[i][1] = dp[i - 1][2] + prices[i];

        dp[i][2] = Math.max(dp[i - 1][0] - prices[i], dp[i - 1][2]);
    }
    return Math.max(dp[n - 1][0], dp[n - 1][1]);
}

方法二:滑动窗口

//滑动窗口(只与前一天有关)
public int maxProfit(int[] prices) {
    if (prices == null || prices.length == 0) return 0;
    // dp[i][0/1/2] 第i天各个状态的最大值
    // 0 未持有且非冷冻期 <- 0、1
    // 1 未持有但冷冻期(i-1天卖了) <- 2
    // 2 持有 <- 0、2

    int n = prices.length;
    int dp0 = 0, dp1 = 0, dp2 = -prices[0];

    for (int i = 1; i < n; ++i) {
        //dp[i][0] = Math.max(dp[i - 1][1], dp[i - 1][0]);
        int nextDp0 = Math.max(dp1, dp0);
        //dp[i][1] = dp[i - 1][2] + prices[i];
        int nextDp1 = dp2 + prices[i];
        //dp[i][2] = Math.max(dp[i - 1][0] - prices[i], dp[i - 1][2]);
        int nextDp2 = Math.max(dp0 - prices[i], dp2);
        //保证数据不被覆盖再赋值
        dp0 = nextDp0;
        dp1 = nextDp1;
        dp2 = nextDp2;
    }
    return Math.max(dp0, dp1);
}

总结:

能否使用滑动窗口解题主要看转换关系是否满足 dp[i][...]只与dp[i-1][...]有关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java橙旭源

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值