在 ELK 栈中,特别是 Elasticsearch,支持多种类型的搜索语句来查询日志数据。以下是一些常用的搜索语句和查询类型:
-
Match Query:
- 用于全文搜索,可以搜索多个字段。
- 语法示例:
{ "query": { "match": { "field_name": "search_term" } } }
-
Match Phrase Query:
- 用于搜索精确的短语,即使用双引号括起来的短语。
- 语法示例:
{ "query": { "match_phrase": { "field_name": "exact phrase" } } }
-
Term Query:
- 用于搜索具体的词汇,不进行全文分析。
- 语法示例:
{ "query": { "term": { "field_name": "value" } } }
-
Terms Query:
- 用于搜索多个具体的词汇值。
- 语法示例:
{ "query": { "terms": { "field_name": ["value1", "value2"] } } }
-
Range Query:
- 用于搜索数值或日期范围。
- 语法示例:
{ "query": { "range": { "field_name": { "gte": "start_value", "lte": "end_value" } } } }
-
Bool Query:
- 用于组合多个查询,使用
must
,should
,must_not
等子句。 - 语法示例:
{ "query": { "bool": { "must": [match_query], "must_not": [term_query] } } }
- 用于组合多个查询,使用
-
Wildcard Query:
- 支持使用通配符
*
和?
进行搜索。 - 语法示例:
{ "query": { "wildcard": { "field_name": "value*" } } }
- 支持使用通配符
-
Regexp Query:
- 使用正则表达式进行搜索。
- 语法示例:
{ "query": { "regexp": { "field_name": "regular_expression" } } }
-
Prefix Query:
- 搜索以特定前缀开始的词汇。
- 语法示例:
{ "query": { "prefix": { "field_name": "value" } } }
-
Fuzzy Query:
- 允许搜索近似匹配的词汇。
- 语法示例:
{ "query": { "fuzzy": { "field_name": "value" } } }
-
Aggregations:
- 用于对数据进行聚合分析,如计数、求平均值、统计等。
- 语法示例:
{ "aggs": { "agg_name": { "terms": { "field": "field_name" } } } }
-
Highlight:
- 用于在搜索结果中突出显示匹配的部分。
- 语法示例:
"highlight": { "pre_tags": ["@kibana-highlighted-0"], "post_tags": ["@/kibana-highlighted-0"] }
-
Filter:
- 用于对查询结果进行过滤,不计算相关性得分。
- 语法示例:
{ "query": { "bool": { "filter": [range_query] } } }
-
Script Query:
- 使用脚本语言(如 Painless)执行复杂的查询逻辑。
- 语法示例:
{ "query": { "script": { "script": { "source": "doc['field_name'].value > param_value", "params": { "param_value": 42 } } } } }
-
Query String Query:
- 允许使用简单的查询字符串进行搜索。
- 语法示例:
{ "query": { "query_string": { "query": "field_name:value" } } }
这些查询类型可以单独使用,也可以组合使用,以构建更复杂的搜索逻辑。在 Kibana 的 Dev Tools 中,你可以直接使用这些查询语句与 Elasticsearch 的 REST API 进行交互。此外,Kibana 的可视化构建器和搜索栏也支持这些查询类型,允许用户以图形界面的形式构建和执行查询。