**
摘要
**
在过去的几十年里,生物机器人的应用,如外骨骼、假肢和机器人轮椅,已经从科幻小说中的机器发展到几乎商业化的产品。尽管肌电图(EMG)信号仍然存在一些挑战,但利用EMG信号控制此类生物机器人应用的进展是巨大的。
同样,最近发展基于脑电图(EEG)的控制方法的趋势和尝试也显示了这一领域在现代生物机器人领域的潜力,但是基于脑电的控制方法有待完善。
一种将这两种控制方法结合起来的新方法,利用每个系统的优点,减少缺点,因此可能是一个很有前途的系统。本文综述了近年来在生物机器人领域尝试或发展的基于肌电图和脑电的混合融合控制方法,并提出一些潜在的未来方向。
01介绍控制方法
生物机器人领域的最新进展在许多方面都有助于改善一系列人的生活质量,对于身体虚弱、残疾或受伤的人来说,假肢、外骨骼、遥操作机器人和智能轮椅等应用或设备给他们的生活带来了一些希望。然而,控制这些设备需要复杂的技术或方法,因为它们通常与人类用户交互。
对于这些设备的主要要求,如准确性,长期可靠性和安全性是至关重要的。因此,为了满足这些要求,人们提出了许多控制方法,每种方法都使用不同种类的输入信号。
肌电图(EMG)能够直接反映人的运动意图或使用者的肌肉活动,因此在生物机器人的控制方法中,肌电图(EMG)一直是最常用的生物信号之一,许多例子,如轮椅、假肢、外骨骼/矫形器都显示了基于肌电的肌肉信号的有效性。
基于肌电的方法不能用作输入,例如,上肢完全瘫痪的人可能无法使用外骨骼等设备,因为很难从瘫痪肢体的肌肉获取控制信号。
另一方面,随着科技的进步,BCI(brain computer interface)或BMI(brain machine interface)已经吸引了生物机器人领域的关注。脑机接口可以开辟新的途径,直接解码用户的大脑信号,从而控制假肢、外骨骼或轮椅等设备;例如,即使用户的四肢不能进行任何充分的运动,他仍然可以产生指挥性的脑信号,这些信号可用于这种大脑控制接口驱动外骨骼。