nvsirgn的博客
博客首页
特征选择
关注
分享
复制链接
分享到 QQ
分享到新浪微博
扫一扫
文章平均质量分 91
关注数:
0
文章数:
1
文章阅读量:
930
文章收藏量:
3
作者:
脑机接口技术
这个作者很懒,什么都没留下…
展开
专栏收录文章
默认排序
最新发布
最早发布
最多阅读
最少阅读
学术篇 | 面向分类的脑电接口Fuzzy-Rough特征选择
摘要 脑电图(EEG)信号的高质量分类是在实际应用中使用基于EEG的脑机接口(BCI)技术的先决条件。由于脑电信号不稳定,信噪比差,并受到各种外部电磁波的污染,提取脑电信号的信息特征进行分类并不容易。一种可能的方法是从不同的渠道和角度集成功能以捕获更多信息,但是,更多功能需要更多的计算时间和计算机内存。此外,其中一些功能对分类没有多大作用。 在本文中,我们采用Fuzzy-Rough选择方法从候选特征中选择信息量最大的特征,多个分类器用于根据所选特征对EEG信号进行分类,实验分析表明了该方法的有效性和效率。
原创
2021-03-24 15:03:28 ·
930 阅读 ·
0 评论