初始化嵌入 nn.Embedding

本文介绍了如何使用torch.nn.Embedding生成嵌入,并指出其内部嵌入值其实并非正态分布,而是通过初始化过程产生的。重点讲述了嵌入的生成原理和相同数字得到相同嵌入的现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn.Embedding(num_embeddings,embedding_dim,.....其他参数)

生成嵌入:第一个参数是需要生成多少个嵌入,第二个参数是生成嵌入的维度
embedding的取值是正态分布N(0,1)取值,好像不太对
代码验证

import torch
import torch.nn as nn
x=torch.LongTensor([1,2,3,5,2,3])
print(x)
embeddings = nn.Embedding(6,2)
print(embeddings(x))

结果显示,注意虽然嵌入结果为随机,但是相同的数值得到的嵌入相同,例如数字 2 数字 3

tensor([1, 2, 3, 5, 2, 3])
tensor([[-0.1098, -0.8086],
        [ 0.9934,  0.8131],
        [-1.1054, -1.7560],
        [ 1.3097,  0.8458],
        [ 0.9934,  0.8131],
        [-1.1054, -1.7560]], grad_fn=<EmbeddingBackward>)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值