数据集乱序的几种方法

本文探讨了random.shuffle与numpy.random.shuffle在打乱数据集时的区别,包括它们对一维和多维数据的支持。介绍了使用索引值、zip()、设置随机数种子以及sklearn库中的shuffle方法来实现数据集的随机排列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

random.shuffle和numpy.random.shuffle的区别

random.shuffle只能对一维list和两维list进行数据打乱
numpy.random.shuffle可以对列表和数组进行数据打乱

1. 使用索引值

from random import shuffle

x_train, y_train = load_data()
# 创建索引
index = [i for i in range(len(x_train))]
# 打乱索引
shuffle(index)
# 获得打乱的数据集
x_train = x_train[index]
y_train = y_train[index]

2. 使用zip()

x_t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值