NAACL 2022事件相关(事件抽取、事件关系抽取、事件预测等)论文汇总

这篇博客汇总了NAACL 2022关于事件抽取的最新研究,包括事件检测、事件论元抽取、事件共指消解、事件模式归纳和事件时间关系提取等。介绍的模型和方法涉及文档级事件抽取、数据效率提升、跨语言事件检测、对抗训练优化、零样本学习等。同时,提到了新发布的数据集,如SuicideED、MINION和DocEE,以推动文档级事件抽取的发展。此外,还探讨了信息提取、错误信息检测等领域的进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NAACL 2022事件抽取相关(事件抽取、事件关系抽取、事件预测等)论文汇总,已更新全部的论文讲解。

Event Extraction

  • RAAT: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level Event Extraction
    提出一个文档级事件抽取模型,第一次在文档级事件抽取中使用关系信息。提出Relation-augmented Attention Transformer (RAAT),该网络可以覆盖文档级事件抽取中不同尺度和数量的关系。
    在这里插入图片描述

  • DEGREE: A Data-Efficient Generation-Based Event Extraction Model
    提出一种基于生成的事件提取模型,通过更好地结合标签语义和子任务之间的共享知识,可以用更少的数据学习。
    在这里插入图片描述

Event Detection

  • Cross-Lingual Event Detection via Optimized Adversarial Training
    本篇论文专注于跨语言事件检测,目前最新的研究利用了预训练多语言模型的语言不变特性。然而还有改进的余地,本篇论文采用对抗语言适应来训练语言鉴别器,以使用未标记的数据来辨别源语言和目标语言。鉴别器以对抗方式进行训练,以便编码器学习生成精炼的、语言不变的表示,从而提高性能。通过只向鉴别器提供信息量最大的样本来优化对抗训练过程。基于两个不同的指标:样本相似性和事件存在。利用最优传输(Optimal Transport)作为一种解决方案,将这两个不同的信息源自然地结合到选择过程中。
  • Zero-Shot Event Detection Based on Ordered Contrastive Learning and Prompt-Based Prediction
    基于有序的对比学习提出一个zero-shot事件检测模型。将基于prompt的预测引入到zero-shot事件检测问题中,消除了对预定义事件结构和启发式规则的依赖。
    在这里插入图片描述
  • Event Detection for Suicide Understanding
    介绍了 SuicideED:一个用于事件检测任务的新数据集,具有七种自杀事件类型,可全面捕获自杀行为和想法,以及一般风险和保护因素。

Event Argument Extraction

  • A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction
    提出一个双流编码模块,从局部和全局两方面编码上下文。提出一个AMR (Abstract meaning Representation)引导的交互模块,方便文档内的语义交互,从而更好地捕捉远距离依赖。在RAMS和WikiEvents数据集上达到SOTA。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值