Chroma使用入门以及向量数据库查询入门

文章介绍了如何使用ChatGLM、PyPDFLoader和Chroma库加载PDF文档,提取嵌入向量,创建一个基于上下文的问题回答系统,实现在给定文本内容中寻找相关信息并生成答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

<think>好的,用户想了解如何使用Chroma向量数据库。首先,我需要回忆一下Chroma的基本信息,它是一个开源的向量数据库,常用于机器学习和AI应用中,特别是在处理文本嵌入和相似性搜索方面。用户可能希望了解如何安装、初始化、存储数据以及进行查询等步骤。 根据系统指令,我需要使用正确的中文回答,并遵循LaTeX格式要求。同时,要生成相关问题,并在回答中自然地添加引用标识。用户提供的引用中,引用[1]提到更多Chroma的详细信息,引用[3]讨论了向量数据库与LLM的集成,这可能对用户有帮助。 首先,我应该分步骤介绍Chroma使用,包括安装、客户端初始化、集合创建、添加文档、查询等。需要确保每个步骤有代码示例,并用Python的代码块展示。同时,引用相关文献,比如在介绍Chroma时引用[^1],在讨论与LLM集成时引用[^3]。 然后,生成相关问题,可能需要包括性能优化、与其他工具集成、部署方式等,引用中的部署方法在引用[4]提到,可以引用到相关问题中。同时,用户可能对实际应用场景感兴趣,比如与LLM结合,这也需要覆盖。 检查是否符合所有格式要求:行内数学表达式是否正确使用$...$,独立公式是否用$$...$$,但当前内容可能不涉及复杂数学公式,所以可能不需要。确保回答结构清晰,分步骤说明,代码块正确,引用标识自然添加。 最后,验证信息准确性,比如安装命令是否正确,Chroma的最新用法是否有变化,是否需要提到持久化存储或服务器部署等。根据引用[4],部署方法可能涉及Docker等,但用户问题主要聚焦在使用方法,可能不需要详细展开部署,但可以在相关问题中提及。 总结回答结构:简介、安装、初始化客户端、创建集合、添加文档、查询、与LLM集成,然后相关问题部分。确保每个部分都有对应的引用,如简介引用,集成引用[^3],部署引用[^4]。</think>### 如何使用Chroma向量数据库 Chroma是一个轻量级、高性能的开源向量数据库,专为机器学习场景设计,尤其适合存储和检索文本嵌入(embeddings)。以下是其核心使用步骤: --- #### 1. **安装Chroma** ```bash pip install chromadb ``` --- #### 2. **初始化客户端** ```python import chromadb client = chromadb.Client() # 默认使用内存模式 # 持久化存储模式(需指定路径) # client = chromadb.PersistentClient(path="chroma_db") ``` --- #### 3. **创建集合(Collection)** 集合用于存储相似类型的向量数据: ```python collection = client.create_collection(name="docs") ``` --- #### 4. **添加文档与向量** 将文本、元数据和对应向量存入集合: ```python documents = ["机器学习简介", "Chroma的向量检索原理"] metadatas = [{"source": "book1"}, {"source": "paper2"}] ids = ["doc1", "doc2"] # 假设已生成嵌入向量(例如用BERT模型) embeddings = [[0.1, 0.2, ...], [0.3, 0.4, ...]] collection.add( documents=documents, metadatas=metadatas, ids=ids, embeddings=embeddings ) ``` --- #### 5. **相似性查询** 通过查询向量检索最相关的文档: ```python query_embedding = [0.15, 0.25, ...] # 查询文本的嵌入向量 results = collection.query( query_embeddings=query_embedding, n_results=3 # 返回前3个匹配项 ) # 输出匹配文档内容 print(results["documents"]) ``` --- #### 6. **与LLM集成(如GPT)** 将Chroma的检索结果输入大语言模型以生成回答: ```python from langchain.llms import OpenAI llm = OpenAI() query = "机器学习的核心概念是什么?" # 1. 通过Chroma检索相关上下文 contexts = collection.query(query_embeddings=...) # 2. 将上下文与问题结合输入LLM response = llm.generate( f"基于以下信息回答:{contexts}。问题:{query}" ) print(response) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值