浮式风机气动性能逆向设计
背景
在实际浮式风机项目中的Pre-FEED或者FEED阶段,总体设计部门需要初步完成浮式基础主尺度、结构、系泊系统等性能的设计,在设计的过程中,需要把风机气动力和惯性力作为参数输入,来计算浮式系统的总体性能,然而风机厂家出于商业保密,并不会提供风力机的详细参数,只会提供一些基础信息(叶片、RNA质量惯量、切入\额定\切出风速、切入\额定\切出转速等)、功率曲线、推力曲线、塔架信息等概要信息。总体设计部门,需要基于这些概要信息,逆向设计出输入参数,进而进行分析、计算和设计。
本质上这是一个多目标优化问题,即在不同风速下
V
1
V_1
V1、
V
2
V_2
V2…
V
n
V_n
Vn,计算基准风力机的气动推力
T
1
c
T_1^c
T1c、
T
2
c
T_2^c
T2c…
T
n
c
T_n^c
Tnc和功率
P
1
c
P_1^c
P1c、
P
2
c
P_2^c
P2c…
P
n
c
P_n^c
Pnc,使得气动推力
T
c
T^c
Tc与功率
P
c
P^c
Pc的计算值与目标推力
T
t
T^t
Tt和目标功率
P
t
P^t
Pt的差值最小,最好差值是0。
即求以下最值:
m
i
n
i
m
u
m
∑
i
=
1
n
(
T
i
c
−
T
i
t
)
2
+
(
P
i
c
−
P
i
t
)
2
minimum \sum_{i=1}^{n} (T_i^c-T_i^t)^2+ (P_i^c-P_i^t)^2
minimumi=1∑n(Tic−Tit)2+(Pic−Pit)2
在实际情况中,当推力吻合时,功率一般都是吻合的,因为这可以通过调整控制器实现,于是只需要求该最值:
minimum
∑
i
=
1
n
(
T
i
c
−
T
i
t
)
2
\text{minimum} \sum_{i=1}^{n} (T_i^c-T_i^t)^2
minimumi=1∑n(Tic−Tit)2
在优化过程中,如果以上述函数作为优化目标,即不容易收敛,又会导致计算量过大,一个建议的方法是,把上述方程作为约束,而把
m
a
x
A
E
P
max AEP
maxAEP作为优化目标,设计变量是叶片不同截面处的弦长c和扭角t,即写成如下形式:
Design variables:
c
j
,
t
j
Maxmize
A
E
P
subject to
∑
i
=
1
n
(
T
i
c
−
T
i
t
)
2
=
0
\text{Design variables: } c_j, t_j\\ \text{Maxmize } AEP \\ \text{subject to } \sum_{i=1}^{n} (T_i^c-T_i^t)^2=0 \\
Design variables: cj,tjMaxmize AEPsubject to i=1∑n(Tic−Tit)2=0
需要使用的工具
1.多目标优化软件。
2.气动性能计算软件。
基于前述可以发现,该问题本质上是一个多目标优化问题,只要有优化求解模块、气动求解模块,就可以完成该设计,然而在实际过程中,搭建框架、抽象问题,都是需要复杂的工作,比如,叶片的弦长是一条连续曲线,需要将其拟合出来,并通过调整曲线控制点来改变弦长,但是轮毂部分的弦长往往是不能更改的,为了解决这个问题,我建议使用WISDEM,其是一个集成的评估工具,可以评估并优化多种参数。详细的使用方法可以参考Issues587
优化结果展示: