大模型技术概述
大模型(Large Language Models, LLMs)是指参数量非常庞大的语言模型,通常包含数十亿甚至数万亿个参数。这些模型通过在大规模文本数据上进行预训练,学习到了丰富的语言模式和语义信息,能够在多种自然语言处理(NLP)任务中表现出色。近年来,随着计算资源的增加和深度学习技术的进步,大模型逐渐成为NLP领域的主流工具。
BERT、LLaMA、RAG、LangChain 详解
1. BERT (Bidirectional Encoder Representations from Transformers)
-
简介:BERT是由Google在2018年提出的预训练语言模型,基于Transformer架构。它通过双向编码器(Bidirectional Encoder)捕捉上下文信息,能够生成上下文相关的词嵌入(Embeddings)。BERT的主要创新在于其使用了掩码语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)两种预训练任务。
-
特点:
- 双向编码:BERT可以同时考虑前后的上下文信息,生成更准确的词表示。
- 预训练+微调:BERT首先在大规模无标注语料上进行预训练,然后在特定任务上进行微调(fine-tuning),以适应不同的下游任务(如