【Machine Learning·机器学习】决策树之ID3算法(Iterative Dichotomiser 3)

本文介绍了决策树中的ID3算法,包括决策树的基本构造方法、如何评价特征优劣的标准——信息增益,以及信息熵和信息增益的计算。文章详细阐述了利用信息增益构建决策树的过程,并给出了构造终止的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、什么是决策树

决策树,就是一种把决策节点画成树的辅助决策工具,一种寻找最优方案的画图法。
如下图所示,从左图到右图就是一个简单的,利用决策树,辅助决策的过程。
在这里插入图片描述

2、如何构造一棵决策树?

2.1、基本方法

通过对不同特征的优先级区分判断后,优先选择优先级高的特征作为划分的特征。(如上图所示,假设优先级:学历>院校>工作经验。因此我们优先选择了学历作为分类依据,次而选择了院校作为分类依据,最后才选择了项目经验作为分类依据)。

那么,下一个问题来了,我们是怎样判断一个特征的优先级的?具体来说,就是我们在评价一个特征优先级时候的评价标准是什么。这个评价标准,在决策树中非常重要,一个合适评价标准,可以将不同的特征按照非常合理的方式进行优先级排序,从而能够构建出一颗比较完美的决策树。而一个不合适的评价标准则会导致最终构造的决策树出现种种问题。

2.2、评价标准是什么/如何量化评价一个特征的好坏?

在不同的决策树算法中,这个特征好坏的评价标准略有不同。比如,在问哦们今天讲的ID3算法中,评价标准是一个叫做 信息增益(Information Gain)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值