在数字时代,影像超分技术宛如魔法般存在,它能让老旧模糊的照片焕发新生但目前面临着高计算量、稳定性不足,压缩与量化误差影响大,退化模型的估计难度高等痛点与挑战,本文将围绕影像超分的工作技术原理、应用场景等展开详解。
图片来自星图云开放平台
影像超分技术超分辨率重建,是一种通过算法将低分辨率(LR)影像转换为高分辨率(HR)影像的技术,通过挖掘影像中的空间、光谱或时间信息,恢复因传感器限制或大气干扰而丢失的高频细节,从而提高遥感影像的空间分辨率和细节信息,提升影像质量和清晰度,满足遥感任务需求。
分辨率受传感器性能(如像素大小、信噪比)和成像条件(如大气散射、平台抖动)限制,超分技术主要是通过技术手段突破物理限制
①多帧超分:利用同一场景的多幅低分辨率影像(存在亚像素位移)重建高分辨率影像(如频域方法、最大似然估计)。
②单帧超分:基于深度学习(如卷积神经网络CNN、生成对抗网络GAN)从单幅LR影像中预测HR细节。
影像超分工作原理:
基于插值:通过对低分辨率影像中已知像素点的值进行计算,来估计未知像素点的值,从而实现图像的放大。常见的插值算法有最近邻插值(将离目标像素点最近的已知像素点的值赋给该目标像素点)、双线性插值和双三次插值等。这种方法是较为基础的方法,计算简单、速度快,但可能会导致图像出现锯齿状或模糊等问题。
基于重建:利用影像的统计特性、空间相关性等,建立一个从低分辨率影像到高分辨率影像的映射模型。典型的基于重建的方法有最大后验概率(MAP)估计法。这种方法能较好地保留影像的细节和边缘信息,但计算复杂度较高。
基于深度学习:通常使用大量的低分辨率-高分辨率影像对作为训练数据(结合不同分辨率层级特征做多尺度融合),让神经网络学习两者之间的映射关系。基于学习的方法能够自动学习到更复杂的影像特征,从而在超分效果上有很大的提升,能够生成更清晰、更逼真的高分辨率影像。
影像超分应用场景:
城市规划与管理:提升影像分辨率可改善小尺度地物(如车辆、建筑物)的识别精度。
农业监测与评估:高分辨率的影像能够清晰地显示农田的边界、作物的分布以及农作物的细节特征;高分辨率NDVI影像可精准分析作物长势或病虫害。
资源勘查:高分辨率的遥感影像能够帮助地质学家更清晰地观察地质构造、岩石纹理等细节信息,从而更准确地判断矿产资源的潜在分布区域。对于水资源调查,超分后的影像可以更好地显示河流、湖泊的边界和水体的细微变化,有助于监测水资源的动态变化和评估水资源的储量。
数据融合与历史影像利用:①将老旧低分影像(如90年代Landsat 5)超分后与现代数据对比,支持长期气候变化研究。②低成本卫星(如CubeSat)拍摄的LR影像经超分后接近商业卫星(如WorldView)效果,降低数据成本。
注意!!!【避免过度依赖算法“想象”细节】 目前的超分技术仍有一定的应用限制
①物理约束:超分无法恢复传感器未捕获的信息(如高频信号完全丢失时)
②真实性平衡:深度学习可能生成虚假纹理(如GAN“幻觉”现象),需通过定量指标(如PSNR、SSIM)和目视解译验证。
③计算效率:大范围遥感影像处理有待优化。
基于以上技术原理,目前市面上已经出现成熟的影像超分算法,通过API接口调用可以进行全国范围影像超分快速获取和查询。
体验影像超分上星图云开放平台
以“超分影像查询”API调用为例
请求示例↓↓↓
https://api.open.geovisearth.com/v2/plus/sr/search?bbox=116.97900000024993,30.49510000006501,117.23030000034476,30.60829999974527&有效token
返回示例↓↓↓
超分影像查询接口-星图云开放平台