受副热带高压影响,最近我国多地进入了高温天气和桑拿天。浙江、上海、福建等地高温天天见,是此轮高温过程的核心影响区域,高温凶猛且持续时间久;广东、广西等地也是必 “蒸” 之地,桑拿天天见;7月2日前后闷热升级,高温区域扩大,河北、北京、山东、河南等地桑拿天将维持 5 天以上。气温连连攀升,体感温度更是让人难以适应,那么气温和体感温度的数据来源是如何?气温和体感温度之间的联系又是什么?将在下文解答
气温数据获取原理↓↓↓
-
气象观测站数据采集
地面气象观测站是获取气温数据的基础环节。观测站配备有高精度的温度传感器,通常放置在离地面 1.5 米左右高度的百叶箱内。这样的设置旨在保证温度测量不受地面辐射、降水以及其他外界干扰因素的影响,从而获取到具有代表性的空气温度。传感器将感应到的温度信号转换为电信号,并通过数据采集器进行数字化处理,按照一定的时间间隔(例如每 10 分钟)记录一次数据。这些数据会被实时传输至气象数据中心,成为构建天气实况与预报体系的基础数据。
-
卫星遥感监测
卫星搭载了多种气象观测仪器,其中热红外传感器在气温监测方面发挥着重要作用。地球表面的物体都会向外辐射红外线,且辐射强度与物体温度相关。热红外传感器通过接收地球表面及大气层发射的红外线辐射能量,利用普朗克定律等原理反演得到相应区域的温度信息。卫星遥感能够提供大面积、连续的气温监测数据,尤其是在地面观测站分布较为稀疏的地区,如海洋、高山、沙漠等,弥补了地面观测的局限性,为全球气温监测提供了重要补充。
-
数值天气预报模型运算
数值天气预报(NWP)模型是现代天气预报的核心技术之一,对于气温预报起着关键作用。模型以大气动力学和热力学方程组为基础,将地球大气划分为三维网格。通过输入初始时刻的气象观测数据,如地面气温、气压、湿度、风场等,以及边界条件,模型利用超级计算机进行数值积分运算,模拟大气的运动和演变过程,预测未来不同时刻各个网格点的气象要素,包括气温。随着计算能力的提升和模型算法的不断优化,数值天气预报模型对气温的预报精度和时效都得到了显著提高。
体感温度数据获取原理↓↓↓
体感温度并非单纯的气温,它综合考虑了气温、湿度、风速、太阳辐射等多种因素对人体热感的影响。其数据获取相对更为复杂,需要综合多源数据并通过特定算法计算得出。
湿度因素:湿度对体感温度影响显著。相对湿度通过影响人体汗液蒸发速率来改变体感温度。在高温环境下,当相对湿度较高时,汗液不易蒸发,人体散热受阻,会感觉更热;反之,较低的相对湿度有利于汗液蒸发,带走热量,使人感觉相对凉爽。湿度数据主要通过地面气象观测站的湿度传感器获取,同样经过数据采集和传输进入气象数据系统。
风速因素:风速影响人体与周围空气的热量交换。较高的风速能加速空气流动,使人体表面的热量更快地被带走,降低体感温度,这就是所谓的 “风寒效应”。在寒冷天气中,风速越大,体感温度越低。气象观测站通过风速仪测量风速,风向风速数据也是构建体感温度模型的重要输入参数。
太阳辐射因素:太阳辐射直接为地球表面提供热量,当人体暴露在阳光下时,会吸收太阳辐射的能量,从而升高体感温度。卫星搭载的辐射仪可以监测太阳辐射强度,地面气象观测站也有专门设备测量到达地面的太阳辐射量。这些数据与气温、湿度、风速等数据相结合,用于计算体感温度。
【全国精细化网格小时预报API】局部精细化程度高、时空分辨率高、更新频率高,提供小时级更新、公里级精细预报