图神经网络:原理、任务与卷积网络详解
1. 图的基础概念
图是一种非常通用的结构,由一组节点(或顶点)组成,节点对之间通过边(或链接)相连。图通常是稀疏的,即只有一小部分可能的边实际存在。
现实世界中很多对象自然地呈现为图的形式,例如:
- 道路网络:节点是物理位置,边代表它们之间的道路。
- 化学分子:节点代表原子,边代表化学键。
- 电路:节点代表组件和连接点,边是电气连接。
此外,许多数据集也可以用图来表示,即便它们表面上并非如此:
- 社交网络:节点是人,边代表他们之间的友谊。
- 科学文献:节点是论文,边代表引用关系。
- 维基百科:节点是文章,边代表文章之间的超链接。
- 计算机程序:节点是语法标记,边代表涉及这些变量的计算。
- 几何点云:每个点是一个节点,边连接到其他附近的点。
- 细胞中的蛋白质相互作用:节点是蛋白质,若两个蛋白质相互作用则存在边。
另外,集合可以看作是每个成员都与其他成员相连的图,图像可以看作是具有规则拓扑的图,每个像素是一个节点,与相邻像素有边相连。
2. 图的类型
图可以通过多种方式进行分类:
- 无向图 :如社交网络,节点之间的连接是对称的,没有方向。
- 有向图 :如引用网络,一篇论文引用其他论文,这种关系是单向的。
- 有向异质多图 :如知识图谱,节点可以代表不同类型的实体(如人、国家、公司),任意两个节点之间可以有多种不同类型的边。