24、图神经网络:原理、任务与卷积网络详解

图神经网络:原理、任务与卷积网络详解

1. 图的基础概念

图是一种非常通用的结构,由一组节点(或顶点)组成,节点对之间通过边(或链接)相连。图通常是稀疏的,即只有一小部分可能的边实际存在。

现实世界中很多对象自然地呈现为图的形式,例如:
- 道路网络:节点是物理位置,边代表它们之间的道路。
- 化学分子:节点代表原子,边代表化学键。
- 电路:节点代表组件和连接点,边是电气连接。

此外,许多数据集也可以用图来表示,即便它们表面上并非如此:
- 社交网络:节点是人,边代表他们之间的友谊。
- 科学文献:节点是论文,边代表引用关系。
- 维基百科:节点是文章,边代表文章之间的超链接。
- 计算机程序:节点是语法标记,边代表涉及这些变量的计算。
- 几何点云:每个点是一个节点,边连接到其他附近的点。
- 细胞中的蛋白质相互作用:节点是蛋白质,若两个蛋白质相互作用则存在边。

另外,集合可以看作是每个成员都与其他成员相连的图,图像可以看作是具有规则拓扑的图,每个像素是一个节点,与相邻像素有边相连。

2. 图的类型

图可以通过多种方式进行分类:
- 无向图 :如社交网络,节点之间的连接是对称的,没有方向。
- 有向图 :如引用网络,一篇论文引用其他论文,这种关系是单向的。
- 有向异质多图 :如知识图谱,节点可以代表不同类型的实体(如人、国家、公司),任意两个节点之间可以有多种不同类型的边。

手写数字识别是计算机视觉领域的一个经典问题,它涉及到图像处理、模式识别和机器学习等多个技术。在这个项目中,我们使用神经网络来解决这一问题,这是一项基于深度学习的方法,可以自动从输入图像中提取特征并进行分类。 神经网络是一种模拟人脑神经元连接方式的计算模型,它通过多层非线性变换对输入数据进行建模,以完成学习任务。在手写数字识别中,神经网络通常用于识别MNIST数据集中的0到9的手写数字图像。MNIST数据集是一个广泛使用的标准基准,包含了60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像。 神经网络的基本结构包括输入层、隐藏层和输出层。在手写数字识别任务中,输入层接收28x28像素的图像,隐藏层负责特征学习,而输出层则为10个节点,对应0到9的10个数字类别。常用的神经网络架构如卷积神经网络(CNN)特别适合图像处理任务,因为它能有效地捕获图像的局部特征。 在实现过程中,首先需要预处理数据,包括图像归一化(将像素值缩放到0到1之间)和数据增强(如旋转、翻转以增加训练样本多样性)。接着,定义网络结构,包括选择合适的激活函数(如ReLU、sigmoid或tanh),损失函数(如交叉熵损失)以及优化器(如随机梯度下降SGD、Adam等)。然后,通过反向传播算法更新网络权重,以最小化损失函数。训练过程会反复进行,直到模型收敛或达到预设的训练轮数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值