您的账号已被封禁
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
30、科研评估与模糊规则简化:OWA 与聚类分析的应用
本博文介绍了两种重要方法:基于有序加权平均(OWA)算子的科研评估方法,以及基于聚类分析的模糊规则简化技术。OWA算子通过聚合多个维度的科研指标,更合理地评估学者的科研绩效;而聚类分析则通过定义规则间的距离度量,有效减少模糊规则库的规模。文章还提出了用于评估规则简化效果的有效性指标,并展示了两种方法的实际应用流程和未来研究方向。原创 2025-07-22 03:39:58 · 18 阅读 · 0 评论 -
29、贝叶斯确认度量的不对称性分析与比较
本博文深入探讨了贝叶斯确认度量的不对称性特性,分析了多种确认度量在不同对称性下的表现,并引入不对称性度量来比较它们的差异。此外,博文还介绍了基于OWA聚合算子的科研评估方法,为学术绩效评估提供了新的思路。通过数值实验和理论推导,研究揭示了确认度量的不对称性特征,并讨论了未来在确认理论和科研评估领域的发展方向。原创 2025-07-21 12:55:59 · 14 阅读 · 0 评论 -
28、利用PSO优化交易系统及贝叶斯确认度量的对称性分析
本文探讨了利用粒子群优化(PSO)算法改进基于技术分析指标的交易系统,并通过对称性分析比较贝叶斯确认度量。通过聚合EMA、RSI、MACD和BB的交易信号,结合受限优化问题,最大化交易期结束时的净资本。PSO算法调整参数后,显著提升了交易系统的年化收益率。此外,对贝叶斯确认度量的对称性分析提供了评估证据对结论支持程度的新视角,有助于优化决策制定。研究结果表明,参数优化能够显著提升交易性能,而对称性分析则有助于理解不同度量的特点。原创 2025-07-20 16:27:16 · 16 阅读 · 0 评论 -
27、基于PSO的投资组合与交易系统优化
本博客探讨了基于粒子群优化(PSO)的投资组合选择与交易系统优化方法。在投资组合优化部分,通过引入惩罚参数将约束优化问题转化为无约束形式,并采用自适应更新机制提升求解效率与解的可行性。在交易系统优化中,PSO被用于调整技术指标(如EMA、RSI、MACD、BB)的参数,从而显著提升交易系统的性能。实验结果验证了所提方法在意大利股票市场数据下的有效性。未来的研究方向包括扩展风险度量方式、增加数据多样性以及进一步优化算法性能。原创 2025-07-19 14:33:51 · 16 阅读 · 0 评论 -
26、养老金与投资组合优化:创新方案与实践探索
本文探讨了个人养老金产品设计与非光滑投资组合选择问题的创新解决方案。通过Poisson Lee-Carter模型进行死亡率建模,并结合Vasicek模型和CIR模型进行金融场景建模,设计了一种具有利润参与和可调整保证的递延终身年金,实验结果表明其具备较高的盈利能力。针对非光滑投资组合选择问题,采用基于粒子群优化(PSO)的方案,结合无约束重写、自适应罚参数更新以及解的细化技术,有效解决了复杂的投资组合优化难题。研究为金融与保险领域的决策提供了创新模型和实践方法。原创 2025-07-18 15:23:29 · 21 阅读 · 0 评论 -
25、极端条件下的收益率曲线估计与养老金行业新挑战
本文探讨了在高波动性和负利率等极端市场条件下,不同方法对收益率曲线的拟合能力,并分析了欧元和美元掉期曲线在不同市场情况下的表现。同时,文章研究了当前低利率和低增长环境下养老金行业面临的新挑战,提出了一种具有动态利润参与机制的新型可变递延终身年金产品,以提升传统养老金产品的竞争力。通过参数技术估计系数和RBF网络设置,文章验证了模型的拟合效果,并结合人口统计和金融预测进行了数值模拟,结果显示新产品在保证可持续性的同时提高了被保险人的收益潜力。最后,文章总结了收益率曲线估计和养老金产品创新对金融市场稳定与发展的原创 2025-07-17 11:36:52 · 17 阅读 · 0 评论 -
24、电池参数识别与收益率曲线估计的创新方法
本文探讨了两种创新方法在不同领域中的应用:改进的粒子群优化(PSO)算法用于电池参数识别,以及径向基函数(RBF)网络在极端条件下拟合收益率曲线的表现。改进的PSO算法通过遗传杂交、保证收敛和多群实现策略提升了电池参数识别的鲁棒性和精度,并展示了其在电池管理系统中的应用前景。另一方面,RBF网络在极端市场条件下表现出优于传统参数模型的收益率曲线拟合能力,为金融风险管理提供了新的解决方案。文章还对两种方法的未来发展趋势进行了展望,并给出了实际应用中的建议。原创 2025-07-16 16:00:19 · 12 阅读 · 0 评论 -
23、改进的PSO算法用于锂电池等效电路模型的灵活参数识别
本文提出了一种基于改进粒子群优化(PSO)算法的灵活参数识别方法,用于锂电池的等效电路模型。通过引入混合遗传-PSO(HG-PSO)算法,结合多群实现和保证收敛的更新规则,有效提高了参数识别的准确性与稳健性。该方法直接使用实际测量数据进行拟合,无需依赖电池数据表或特定测试,可在电池实际使用过程中实时应用。验证结果表明,该方法在训练集和测试集上均表现出较低的均方误差(MSE),并且结合平方根无迹卡尔曼滤波器(SR-UKF)实现了高精度的SoC估计。原创 2025-07-15 16:12:23 · 12 阅读 · 0 评论 -
22、热浸镀锌中波纹缺陷的因果分析与质量提升研究
本文研究了热浸镀锌(HDG)过程中厚卷材低锌涂层表面波纹缺陷的发生机制,并提出了一种基于决策树(DT)的因果分析方法来识别关键工艺变量。通过对一家意大利公司提供的工艺数据进行预处理、模糊异常值检测和二元分类建模,成功识别出影响波纹缺陷的关键变量,如气刀距离、水浴冷却温度和工艺段速度等。研究结果表明,该方法在空气和氮气吹扫情况下的分类准确率分别超过99%和97%,并为工业操作提供了可解释性强的决策规则,有助于提升卷材质量和生产效率。原创 2025-07-14 16:16:25 · 11 阅读 · 0 评论 -
21、提高工业数据集变量选择稳定性的方法
本文提出了一种结合支配集冗余分析和遗传算法(GA)的变量选择方法,旨在提高工业数据集变量选择的稳定性和计算效率。该方法首先通过支配集算法去除冗余变量,然后利用基于GA的包装器方法选择最优变量子集。实验结果显示,该方法在多个数据集上显著提升了变量选择的稳定性,同时保持了较低的误差和较高的适用性。此外,该方法无需对数据进行先验假设,可广泛应用于分类和回归任务,具有良好的可解释性和实际应用潜力。原创 2025-07-13 12:05:19 · 10 阅读 · 0 评论 -
20、先进计算智能技术与增强替代模型评估
本博客探讨了先进计算智能技术在钢筋混凝土试件钢筋缺陷检测与分类中的应用,以及增强替代模型在基板集成波导器件表征中的使用。研究展示了基于计算词(CWs)的模糊规则库在缺陷检测和分类中的高效性能,同时比较了Kriging、支持向量回归机(SVRM)和人工神经网络(ANN)在构建增强替代模型(ESM)时的表现,其中Kriging方法表现最佳。这些技术为相关领域的研究和发展提供了有效支持。原创 2025-07-12 12:38:13 · 13 阅读 · 0 评论 -
19、无线传感器网络分析与钢筋混凝土损伤检测的创新技术
本文介绍了两种创新技术:一种是将无线传感器网络视为整体进行扰动检测的新方法,通过网络连接性度量和子网划分提升检测效率;另一种是基于词语计算(CWs)的模糊方法,用于钢筋混凝土损伤的无损检测与分类。实验验证了两种方法在各自领域的有效性,并展示了其未来在物联网和工程检测中的广泛应用前景。原创 2025-07-11 14:14:28 · 14 阅读 · 0 评论 -
18、无线传感器网络分析与异常检测技术
本文提出了一种基于网络分析的无线传感器网络(WSN)异常检测方法。该方法通过构建网络模型,评估整个网络及其子网的连通性,利用特征路径长度(LN)、平均节点连通性(CN)、平均简单路径数(PN)等仪表盘参数检测涉及多个(异构)传感器的潜在异常,并评估这些异常对网络的影响。实验结果表明,该方法在多传感器异常检测和网络恢复能力评估方面具有良好的性能,但也存在无法判断物理量变化方向和难以发现单个异常的局限性。未来的研究方向包括优化参数敏感度、引入额外特征以及与其他检测方法的结合,以提升方法的适用性和实用性。原创 2025-07-10 15:26:34 · 8 阅读 · 0 评论 -
17、基于卷积神经网络的等离子体丝状物识别研究
本研究旨在利用卷积神经网络(CNN)技术,特别是Faster-RCNN算法,自动识别核聚变托卡马克装置中等离子体边缘的丝状物结构。通过合成包含丝状物的二维高斯函数图像数据集,构建深度学习模型进行训练和测试,实现了对丝状物的高效检测。研究取得了较高的精度(超过97.5%),但召回率仍存在改进空间。未来的研究将聚焦于提升低像素强度和边界丝状物的检测能力,并探索多模态数据融合等方法,以更全面地识别等离子体中的丝状物结构。原创 2025-07-09 09:18:05 · 18 阅读 · 0 评论 -
16、3D 人脸几何特征智能质量评估与等离子体丝识别技术解析
本文深入探讨了3D人脸几何特征的智能质量评估与等离子体丝识别技术。针对3D人脸识别,详细分析了几何描述符的分类性能,包括测地距离、形状指数、曲率指数和欧几里得距离,并通过统计和神经方法验证其重要性排序。同时,介绍了基于深度学习的等离子体丝识别技术,通过合成数据训练定制化的Faster R-CNN算法以实现高效检测。文章展示了统计分析与深度学习在特征评估和识别任务中的应用前景,并为未来研究提供了技术展望。原创 2025-07-08 16:53:55 · 9 阅读 · 0 评论 -
15、单声道音轨中鼓和贝斯分离及3D人脸几何特征智能质量评估
本文探讨了音频处理和人脸识别领域的两项重要研究成果:单声道音轨中鼓和贝斯的分离技术,以及3D人脸几何特征的智能质量评估方法。在音频处理方面,提出了一种结合DRNN和LSTM单元的深度学习模型,实现了对单声道音轨中鼓和贝斯信号的有效分离,并在多个评估指标上优于传统NMF方法。在3D人脸几何特征评估方面,通过多层感知器神经网络和PCA降维技术,对几何特征的判别能力进行了系统分析。文章还分析了两种技术的技术原理、发展趋势、面临的挑战以及未来应用前景,强调了数据质量、算法优化和跨领域合作的重要性,并展望了相关技术在原创 2025-07-07 14:31:35 · 11 阅读 · 0 评论 -
14、4D超复数代数自适应信号处理与单声道音频源分离
本文探讨了4D超复数代数(包括四元数和四维数)在自适应信号处理中的应用,重点分析了QLMS和TLMS两种算法在不同输入信号特性下的性能表现及计算成本。同时,研究了单声道音频源分离的挑战与解决方案,提出基于LSTM的DRNN方法能够有效分离音频中的鼓和贝斯源。通过实验对比不同算法的效果,给出了在不同场景下算法选择的建议。最后展望了超复数代数的应用拓展、音频源分离技术的改进方向以及算法优化的未来趋势。原创 2025-07-06 11:08:08 · 14 阅读 · 0 评论 -
13、线性储层计算中的分层时间表示与四维超复数代数在自适应信号处理中的应用
本文探讨了线性储层计算中的分层时间表示以及四维超复数代数在自适应信号处理中的应用。首先,针对线性深层储层计算模型 L-deepESN,分析了其在多时间尺度动态建模中的优势,并通过 MSO 任务验证了其卓越的预测性能。随后,研究了四元数和 tessarines 两种四维超复数代数的代数性质差异及其在自适应滤波中的应用,比较了 QLMS 和 TLMS 算法在处理 Ambisonic 3D 音频信号时的表现。总结指出,L-deepESN 在复杂时间序列预测中具有广泛应用前景,而代数系统的选择对多维信号处理性能有显原创 2025-07-05 09:06:11 · 10 阅读 · 0 评论 -
12、非线性信号处理中的先进滤波与计算模型
本博客深入探讨了非线性信号处理中的先进滤波与计算模型,重点分析了不同功能链接扩展(如切比雪夫、勒让德和三角级数扩展)在计算复杂度和性能上的差异,并通过实验验证了切比雪夫 SFLAF 在非线性声学回声消除(NAEC)场景中的优越表现。此外,博客还介绍了线性深度回声状态网络(L - deepESN),其分层结构在处理多时间尺度信号方面展现出强大能力,并为深度循环神经网络的理论与应用提供了新视角。最后总结了相关模型的应用流程、优势及未来研究方向。原创 2025-07-04 12:20:20 · 8 阅读 · 0 评论 -
11、金融时间序列分类与低复杂度非线性滤波器研究
本博文探讨了金融时间序列分类与低复杂度线性参数非线性滤波器的相关研究。在金融时间序列分类部分,介绍了通过构建嵌入向量与趋势标签的映射关系,将预测问题转化为分类问题的方法,并基于WTI时间序列数据,采用多种分类模型(如LDA、QDA、KNN等)进行实验,结果显示分类准确率随着阈值ε的增大而提高,其中KNN在特定参数下取得了最佳准确率。此外,还比较了线性预测器(LSE)与分类模型的表现。在低复杂度非线性滤波器部分,提出了基于切比雪夫多项式扩展的功能链接自适应滤波器(SFLAF)架构,通过线性与非线性分支并行处理原创 2025-07-03 09:09:30 · 11 阅读 · 0 评论 -
10、基于贝叶斯正态图的上下文分析与金融时间序列分类建模
本文探讨了基于贝叶斯正态图的上下文分析方法在图像场景理解中的应用,以及金融时间序列的分类建模在股票市场预测中的使用。通过分析熵、误差概率等指标,研究了嵌入空间维度对模型性能的影响,并提出了结合图像分析与金融数据预测的综合应用思路。文章还强调了实际应用中需要注意的关键因素,并展望了未来可能的研究方向。原创 2025-07-02 14:42:41 · 9 阅读 · 0 评论 -
9、机器学习中的激活函数学习与上下文分析
本文探讨了机器学习中的两个重要研究方向:激活函数的学习与上下文分析。一方面,介绍了使用三次样条插值从数据中学习自适应激活函数的方法(SAF),通过实验展示了其在Chemical和Calhousing数据集上的优越性能,并讨论了参数优化和未来改进方向。另一方面,阐述了利用贝叶斯正态图结合潜在变量模型进行上下文分析的方法,应用于目标检测和场景理解,并在COCO数据集上进行了验证。文章还对比分析了两种方法的特点和应用场景,并提出了结合使用的设想,展示了其在图像分类和智能安防系统中的实际应用效果。最后总结了当前方法原创 2025-07-01 14:45:10 · 15 阅读 · 0 评论 -
8、利用三次样条插值从数据中学习激活函数
本文介绍了一种利用三次样条插值从数据中学习激活函数的方法,提出样条激活函数(SAF)及其在神经网络中的应用。通过引入“阻尼”准则,有效防止了过拟合问题,提升了网络在回归任务中的性能。文章详细阐述了SAF的理论基础、网络设计、实现细节以及实验结果,验证了其在不同场景下的有效性与适应性。未来的研究方向包括扩展到多隐藏层网络、探索其他正则化方法以及实现参数的自适应调整。原创 2025-06-30 12:52:45 · 12 阅读 · 0 评论 -
7、基于聚类的微电网能源管理系统模糊推理系统合成
本文提出了一种基于聚类算法和模糊推理系统(FIS)的微电网能源管理系统(EMS)设计方法。通过结合分时电价政策和储能系统的能量交换策略,利用K-Means聚类对输入数据进行划分,并采用线性最小二乘回归(LLSR)合成FIS规则后件,从而实现高效的EMS优化。实验结果表明,该方法在测试集上达到最优利润的82%,且能量曲线更加平滑,有效降低了储能系统的退化程度。文章还分析了该方案的优势与不足,并展望了未来的研究方向,包括更平滑的参考表面设计、多目标优化函数的制定以及实时数据处理与更新策略。原创 2025-06-29 12:12:04 · 13 阅读 · 0 评论 -
6、低维流形上的错误弹性神经网络与微电网能源管理系统的模糊推理系统合成
本博文介绍了两个重要研究内容:第一部分提出了一种用于处理低维流形上损坏数据的错误弹性神经网络,通过特定的网络架构和贪婪梯度算法,在面对擦除和错误损坏数据时表现出优异的分类性能;第二部分则提出了一种新的模糊推理系统(FIS)合成程序,作为微电网能源管理系统(EMS)的核心推理引擎,通过数据驱动的方法设计FIS,结合K-Means聚类和模糊规则,在考虑分时电价政策的情况下优化能源交易决策,最大化利润并平稳利用储能系统。研究为处理损坏数据和智能电网能源管理提供了有效的方法支持,并展望了未来在算法优化、系统适应性和原创 2025-06-28 16:11:26 · 9 阅读 · 0 评论 -
5、语音增强与低维流形上的误差弹性神经网络技术
本文探讨了语音增强和低维流形上误差弹性神经网络技术的研究进展与应用前景。在语音增强领域,结合语音增强(SE)和神经波达方向估计(NDOA)的方法显著提升了语音质量,PESQ评估提升50%,IS评估提升70%。同时,文章提出引入正交贪婪算法(OGA)的误差弹性神经网络技术,为处理低维流形上的受损数据提供了新思路。该方法避免了传统自动编码器的复杂性,提高了误差定位和修复的效率。文章还分析了这两项技术的优势、应用场景以及面临的挑战,并展望了未来发展方向,包括自适应算法研究、复杂流形模型学习和多技术融合应用。原创 2025-06-27 13:39:44 · 11 阅读 · 0 评论 -
4、基于神经波束形成的语音增强初步成果
本文介绍了一种基于神经网络的到达方向(DOA)估计技术,并将其应用于语音增强领域的波束形成算法。与传统的MUSIC算法相比,该神经DOA估计方法显著提高了估计的准确性,从而改善了受混响和噪声影响的语音信号质量。通过在WSJ0数据集上的实验验证,结合FS波束形成器,神经DOA估计方法在语音质量指标(如PESQ和Itakura-Saito距离)上表现出更优的性能。这些初步成果为未来语音增强技术的研究和应用提供了有价值的参考。原创 2025-06-26 13:17:52 · 12 阅读 · 0 评论 -
3、基于进化代理的数据挖掘:聚类发现与度量学习
本文提出了一种基于进化代理的聚类算法——E-ABC,结合遗传算法与强化学习,通过多个代理在随机子集上运行RL-BSAS算法,实现特征选择和聚类发现。算法在不同数据集上表现良好,能准确估计聚类参数并发现数据的隐藏结构。实验表明,E-ABC在大规模和高维数据上均具有较高的估计质量和识别准确性,具有广泛的应用前景。原创 2025-06-25 11:19:19 · 36 阅读 · 0 评论 -
2、社交互动网络中边累积的时间伪影分析
本博文探讨了在社交互动网络建模中,忽略边停用可能导致的时间伪影问题。通过分析Scratch和Facebook数据集,研究发现传统的累积图系列可能会错误地显示网络致密化和直径缩小等现象,而基于活跃边构建的活动图系列则能更准确地反映网络的真实状态。文章强调了社交容量和突发通信在动态网络建模中的重要性,并提出了未来研究方向,包括纳入更多数据集、探索社区结构与交互模式的相关性,以及构建更准确的社交网络模型。原创 2025-06-24 12:14:39 · 8 阅读 · 0 评论 -
1、非线性动态信号处理的神经前沿进展
本文综述了非线性动态信号处理领域的前沿进展,重点探讨了神经网络和自适应系统在处理复杂非线性数据方面的优势和应用。从实验科学背景到工业、教育、社交网络、经济金融等多个领域的实际应用,文章展示了这些技术如何提高数据处理效率、优化决策并挖掘数据价值。同时,文章展望了未来技术的发展方向,包括深度学习与强化学习的结合、跨领域知识融合以及数据安全和隐私保护等关键问题。原创 2025-06-23 15:50:27 · 13 阅读 · 0 评论