店铺牌匾识别识别系统需求文档
1.概述(作为了解的)
需求大致是哪些,可写可不写。
项目背景:随着店铺数量的不断增加,人工审核牌匾信息的工作量巨大的而且容易出错。为了提高效率和准确率,引入人工智能技术进行自动识别和分类。
目标:开发一个基于人工智能的牌匾识别系统,能够自动识别和分类不同店铺的牌匾图片,提取关键信息(如:店铺名称提取,电话,营业时间,商城招牌名称,自适应判断,名称判断,相关联判断)。
2.项目目标
主要目标:
1.自动识别牌匾上的文字。
2.提取并存储关键信息(如:店铺名称提取,电话,营业时间,商城招牌名称,自适应判断,名称判断,相关联判断)。
3.生成结构化数据,便于后续处理和分析。
次要目标:
1.提供友好的用户界面。
2.支持多语言的识别。
3.提供错误纠正和反馈机制。
3.功能需求
核心功能:
图片上传:支持用户上传牌匾图片。
自动识别:自动识别图片上的文字,并提取关键信息。
信息提示:在界面上识别出的信息,供用户曲儿和修正。
信息存储:将识别的信息存储到数据库中。
错误反馈:提供错误反馈机制,用户可以手动纠正识别错误。
扩展功能:
批量处理:支持批量上传和处理图片。
多语言支持:支持多语言的识别和处理。
历史记录:记录每次识别的操作日志,便于追踪和审计。
4.数据需求
数据来源:
从公开数据集中获取样本数据。(通过购买渠道等)
从实际业务中收集牌匾图片数据。
数据预处理:
清洗和标注数据
数据格式:
图片格式:jpg , jpeg , png
标注格式:json, xml
5.验收标准
功能验收:
系统能够正确识别并提取牌匾上的文字。
系统能够处理多种语言的牌匾图片。
系统能够批量处理图片。
系统能够生成机构化数据,并存储在数据库中。
性能验收:
识别的准确率:95%以上。
处理速度:每分钟处理100张图片一样(不一定)
用户体验:
界面友好,操作简单。
错误反馈机制完善,用户可以手动纠正错误。
6.项目进度
阶段规划:
需求分析:1周
数据准备:2周
系统开发:8周
系统测试:2周
上传部署:1周