chinese-room :一个专做优秀项目翻译的Google 开源项目

简介

项目原址

http://code.google.com/p/chinese-room/wiki/Introduction?tm=6

 

中文屋将为广大开源爱好者介绍更多的优秀的项目。

旨在为中国众多程序员和学生提供一个学习优秀程序的平台。

同时欢迎更多的开源爱好者参与进来,推动开源在中国的发展。

文档结构

我们把翻译好的和正在翻译的项目名称放在侧边栏中,

各个项目的中文文档组织结构尽可能与项目外文文档结构一致,方便读者对照。

我们把正在翻译的项目文档显示在项目的子标题中,尚未开始翻译的部分不会显示。

文档会无限期更新。

 

欢迎加入

 

在开源的世界中,有很多优秀的项目值得我们学习。

为了推动开源代码在中国的规模,为了帮助外文水平尚不太好的程序员和学生学习使用开源项目,

我们诚挚地邀请您加入到我们的小组中来。

无论是Google Code中的,还是Sourceforge上的,或是别的开源社区,

只要您对见到了感兴趣的项目,而且想帮助大家学习使用,或者你对翻译比较感兴趣,

那么就请您考虑把翻译好的文档放到这里。

这里是开源项目中文文档的一个集中营地,也有助于您的文档的推广。

如果您对现有的文档组织或翻译有任何意见,请跟我们联系,我们会认真考虑您的意见。

 

 

Google Forum
Subscribe Chinese-Room Translators' Group
Email:
Visite our Group

 

 

在这儿,我们一起发现新奇

 

在这儿,我们共同体验成就感带来的自信

 

在这儿,我们把开源呈现给更多的求知者

 

去年,谷歌发布了 Google Neural Machine Translation (GNMT),即谷歌神经机器翻译一个 sequence-to-sequence (“seq2seq”) 的模型。现在,它已经用于谷歌翻译的产品系统。   虽然消费者感受到的提升并不十分明显,谷歌宣称,GNMT 对翻译质量带来了巨大飞跃。   但谷歌想的显然不止于此。其在官方博客表示:“由于外部研究人员无法获取训练这些模型的框架,GNMT 的影响力受到了束缚。”   如何把该技术的影响力最大化?答案只有一个——开源。   因而,谷歌于昨晚发布了 tf-seq2seq —— 基于 TensorFlow 的 seq2seq 框架。谷歌表示,它使开发者试验 seq2seq 模型变得更方便,更容易达到一流的效果。另外,tf-seq2seq 的代码库很干净并且模块化,保留了全部的测试覆盖,并把所有功能写入文件。   该框架支持标准 seq2seq 模型的多种配置,比如编码器/解码器的深度、注意力机制(attention mechanism)、RNN 单元类型以及 beam size。这样的多功能性,能帮助研究人员找到最优的超参数,也使它超过了其他框架。详情请参考谷歌论文《Massive Exploration of Neural Machine Translation Architectures》。   上图所示,是一个中文到英文的 seq2seq 翻译模型。每一个时间步骤,编码器接收一个汉字以及它的上一个状态(黑色箭头),然后生成输出矢量(蓝色箭头)。下一步,解码器一个一个词地生成英语翻译。在每一个时间步骤,解码器接收上一个字词、上一个状态、所有编码器的加权输出和,以生成下一个英语词汇。雷锋网(公众号:雷锋网)提醒,在谷歌的执行中,他们使用 wordpieces 来处理生僻字词。   据雷锋网了解,除了机器翻译,tf-seq2seq 还能被应用到其他 sequence-to-sequence 任务上;即任何给定输入顺序、需要学习输出顺序的任务。这包括 machine summarization、图像抓取、语音识别、对话建模。谷歌自承,在设计该框架时可以说是十分地仔细,才能维持这个层次的广适性,并提供人性化的教程、预处理数据以及其他的机器翻译功能。   谷歌在博客表示: “我们希望,你会用 tf-seq2seq 来加速(或起步)你的深度学习研究。我们欢迎你对 GitHub 资源库的贡献。有一系列公开的问题需要你的帮助!”   GitHub 地址:https://github.com/google/seq2seq   GitHub 资源库:https://google.github.io/seq2seq/nmt/ 标签:tensorflow  seq2seq  谷歌  机器学习
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值