debian系统用spack安装cuda和cudnn

本文详细介绍了如何使用Spack跨平台软件包管理工具安装CUDA和cuDNN,包括选择版本、配置环境变量及解决常见问题的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

spack——一个跨平台的软件包管理工具,docs链接如下:https://spack.readthedocs.io/en/latest/
服务器管理员提示use spack to load cuda,那咱就照做咯

spack install cuda

发现已经安装(主要是获取cuda root)
在这里插入图片描述

spack install cudnn

等待安装(装好了才来写的博客所以没截图),
若要安装特定版本

spack versions cudnn

然后选一个版本安装

spack install cudnn@版本号

后面cuda和cudnn的root我都用/cuda_root/,/cudnn_root/代替
然后把cuda环境变量加到自己用户环境变量配置文件中

vim ~/.bashrc

然后按i通过添加:

export PATH="/cuda_root//bin:$PATH"
export CUDA_HOME=$PATH:/cuda_root/
export LD_LIBRARY_PATH="/cuda_root//lib64:$PATH"

到最后一行
之后别忘了

source ~/.bashrc

ps: debian下vim粘贴不能用右键,咱也没有管理员权限没法改vim配置,只能用ctrl+insert组合键来复制,shift+insert组合键来粘贴
然后把/cudnn_root/include/下的cudnn.h复制到/cuda_root/include/

cp /cudnn_root/include/cudnn.h /cuda_root/include/

然后把/cudnn_root/lib64/目录下的lib开头文件都复制到/cuda_root/lib64

cp lib64/lib* /usr/local/cuda/lib64/ # 复制动态链接库

然后删了原来的动态文件

sudo rm -rf libcudnn.so libcudnn.so.7

在这里插入图片描述
就是这俩红色的文件
然后用libcudnn.so.7.6.5重新生成(后面版本号之后可能会不同)

ln -s libcudnn.so.7.0.5 libcudnn.so.7  # 生成软衔接
ln -s libcudnn.so.7 libcudnn.so  # 生成软链接

然后nvcc -V如下图
在这里插入图片描述
然后就可以了
另外,删除之前的pytorch-cpu之后再装gpu版本发现总是装成cpu版本
从conda新建一个环境就好了

conda create -n pytorch # 新建环境
conda activate pytorch # 切换环境
conda deactivate # 退出环境
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值