HESS使用记录

这篇博客详细介绍了如何运用Python脚本执行遗传关联分析的三个步骤:首先,通过for循环处理不同染色体的数据;然后,分别估计两个性状的本地SNP遗传力;最后,结合结果进行可视化展示,并利用R脚本进行GWAS信号检测。此外,还提到了加速模块下载的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


step1
for chrom in $(seq 22)
do
    python hess.py \
        --local-rhog T2D_2018_HESS.txt AD_2019_HESS.txt \
        --chrom $chrom \
        --bfile ./1kg_eur_1pct/1kg_eur_1pct_chr$chrom \
        --partition ./EUR/fourier_ls-all.bed \
        --out ./out/step1
done

step2

# estimate local SNP-heritability for trait 1
python hess.py --prefix step1_trait1 --out step2_trait1

# estimate local SNP-heritability for trait 2
python hess.py --prefix step1_trait2 --out step2_trait2

step3

python hess.py \
    --prefix ./out/step1 \
    --local-hsqg-est step2_trait1.txt step2_trait2.txt \
    --num-shared 0 \
    --pheno-cor 0 \
    --out step3
可视化
python misc/local_rhog_manhattan.py \
    --local-rhog-est step3.txt \
    --local-hsqg-est step2_trait1.txt step2_trait2.txt \
    --out T2D_AD_local_rhog.pdf \
    --trait-names T2D AD
python misc/local_hsqg_manhattan.py \
    --local-hsqg-est step2_trait1.txt \
    --out trait1_local_hsqg.pdf \
    --trait-name TRAIT1



Rscript ./LOGODetect.R \
--sumstats ./sumstats/BIP.txt,./sumstats/SCZ.txt \
--n_gwas 51710,105318 \
--ref_dir ./LOGODetect_1kg_ref \
--pop EUR \
--ldsc_dir ./ldsc \
--block_partition ./block_partition.txt \
--out_dir ./results 

pip install 模块名 -i https://pypi.tuna.tsinghua.edu.cn/simple#加快下载速度

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值