opencv边缘、轮廓检测,图像金字塔

本文详细介绍了OpenCV中的Canny边缘检测步骤,包括高斯滤波、梯度计算、非极大值抑制和双阈值检测。此外,还探讨了图像金字塔的概念,包括高斯金字塔的上下采样过程。最后,阐述了轮廓检测方法,包括轮廓检索模式、轮廓逼近以及矩形和圆形边框的获取。模板匹配的不同方法也有所提及。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Canny边缘检测
1,步骤
•1) 使用高斯滤波器,以平滑图像,滤除噪声。
•2) 计算图像中每个像素点的梯度强度和方向。
•3) 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。小的梯度值去掉。
•4) 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
minVal设置的小,边界值保留的多
maxVal设置的大,边界值同样保留多
•5) 通过抑制孤立的弱边缘最终完成边缘检测。

2,高斯滤波器
在这里插入图片描述
3,计算梯度与方向
在这里插入图片描述
4,非极大值抑制
在这里插入图片描述
若A点大于B,C,作为边缘点

5,双阈值
在这里插入图片描述

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,80,150)  #minVal,maxVal
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

二、图像金字塔
高斯金字塔:
向下采样(缩小),特征越来越少,方向由底座到塔顶,卷积后长度宽度变成一半,,先用高斯核卷积,偶数行列去掉是为了做缩小
向上采样(放大),方向由塔顶到底座,将图像每个方向扩大两倍,新增行用0填充,再卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值