【JAVA入门】Day23 - 查找算法

【JAVA入门】Day23 - 查找算法



        查找算法我们常用的有:

  • 基本查找
  • 二分查找 / 折半查找
  • 分块查找
  • 插值查找
  • 斐波那契查找
  • 树表查找
  • 哈希查找

        这里我们着重讲解前三种,其他查找方式除了树表查找,都是前三种的扩展。

一、基本查找

131 127 147 81 103 23 7 79

        在一堆数据中找出想要的数据,只需要将它们放入一个容器中,挨个遍历,直到找到想要的数据。

package BasciSeach;

public class BasicSearchDemo1 {
    public static void main(String[] args) {
        //从0索引开始挨个往后查找
        //基本查找/顺序查找

        //数据:{131, 127, 147, 81, 103, 23, 7, 79}
        //需求:是否存在
        int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
        int num = 18;
        boolean result = basicSearch(arr, num);
        System.out.println(result);
    }


    //参数:
    //一:数组
    //二:要查找的元素
    public static boolean basicSearch(int[] arr, int num) {
        //利用基本查找number是否在数组中存在
        for(int i = 0; i < arr.length; i++) {
            if(arr[i] == num){
                return true;
            }
        }
        return false;
    }
}

        利用基本查找,返回元素的索引(不考虑有无重复元素)。

package BasciSeach;

public class BasicSearchDemo2 {
    public static void main(String[] args) {
        //从0索引开始挨个往后查找
        //基本查找/顺序查找

        //数据:{131, 127, 147, 81, 103, 23, 7, 79}
        //需求:返回索引
        int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
        int num = 7;
        int index = basicSearch(arr, num);
        if(index > 0) {
            System.out.println(index);
        }else{
            System.out.println("未找到元素");
        }
    }


    //参数:
    //一:数组
    //二:要查找的元素
    public static int basicSearch(int[] arr, int num) {
        //利用基本查找number是否在数组中存在
        for(int i = 0; i < arr.length; i++) {
            if(arr[i] == num){
                return i;
            }
        }
        return -1;
    }
}

        利用基本查找,返回元素的所有索引(考虑有重复元素)。

package BasciSeach;

import java.util.ArrayList;

public class BasicSearchDemo3 {
    public static void main(String[] args) {
        //利用基本查找,返回元素的索引(考虑有重复元素)
        //返回所有索引
        int[] arr = {131, 127, 147, 81, 103, 23, 7, 81};
        int num = 81;
        ArrayList<Integer> list = basicSearch(arr, num);
        System.out.print("[");
        for(int i = 0; i < list.size(); i++) {
            if(i < list.size() - 1) {
                System.out.print(list.get(i) + ", ");
            }else{
                System.out.print(list.get(i));
            }
        }
        System.out.print("]" + "\n");
    }

    //心得:
    //如果要返回多个数据的话,可以放入集合中
    public static ArrayList<Integer> basicSearch(int[] arr, int num) {
        ArrayList<Integer> list = new ArrayList<>();
        for(int i = 0 ; i < arr.length; i++) {
            if(arr[i] == num) {
                list.add(i);
            }
        }
        return list;
    }
}

二、二分查找 / 折半查找

        二分查找的数据有前提要求:数据必须是有序的。可以是从小到大排列,也可以是从大到小排列。
        二分查找的核心逻辑就是:每次排除一半的查找范围。因此查找效率比基本查找快很多。
        定义两个变量,min 指向 0 索引,max 指向 最大索引,(max + min)/ 2 可以得到中间的索引 mid。此时看该索引和要查找的数据大小关系,如果它比要查找的数据大,那么该数据所在的范围一定在 mid 索引的左半边,此时可以直接令 max = mid - 1,缩小索引范围;如果它比要查找的数据小,那么该数据所在范围一定在 mid 索引的右半边,此时可以直接令 min = mid + 1,缩小索引范围。重复此流程,直到max == min,此时就能找到所找的数据。如果要被查找的数据不存在,程序就会继续执行刚刚的逻辑,此时会发生 min > max,循环结束。

package BasciSeach;

public class BinarySearchDemo1 {
    public static void main(String[] args) {
        //二分查找
        //{7, 23, 79, 81, 103, 127, 131, 147}
        int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};
        int number = 81;
        System.out.println(binarySearch(arr, number));
    }

    public static int binarySearch(int[] arr, int number) {
        //1.定义两个变量记录要查找的范围
        int min = 0;
        int max = arr.length - 1;

        //2.利用循环不断去找要查找的数据
        while(true) {
            if(min > max) {
                System.out.println("要查找的数据不存在!");
                return -1;
            }

            //3.找到min和max的中间位置
            int mid = (min + max) / 2;

            //4.拿着mid指向的元素跟要查找的元素进行比较
            //4.1number在mid左边
            //4.2number在mid右边
            //4.3number跟mid指向的元素一样
            if(arr[mid] > number) {
                max = mid - 1;
            }else if(arr[mid] < number) {
                min = mid + 1;
            }else if(arr[mid] == number) {
                return mid;
            }
        }
    }
}

        二分查找最大的优势就是能提高查找的效率,但是它要求数据必须是有序的。
        如果数据是乱序,先排序再使用二分查找得到的索引没有任何意义,只能知道这个数据是否存在。因为排序之后,数字的位置可能就发生变化了,新的索引没有参考价值。
        二分查找的效率其实可以进一步优化,将 mid 的计算方法改进,如下公式:

mid = min + (key - arr[min]) / (arr[max] - arr[min]) * (max - min);

        其中,key 是要查找的数据。此时这种查找方式就不叫二分查找了,而是叫做插值查找
        还可以利用数学中的黄金分割点的概念进行改进:

mid = min + 黄金分割点左半边长度 - 1

        此时这种查找方法就不叫二分查找了,而是叫做斐波那契查找

三、分块查找

        如果一组数据:块间有序,块内无序。这个时候我们可以应用分块查找
        分块查找的原则在于:

  • 前一块中的最大数据,小于后一块中的所有数据(块内无序,块间有序)。
  • 块数数量一般等于数字的总个数开根号。比如:16个数字一般分为4块左右。

        块对象的定义一般如下所示:

class Block { 			//块
	int max;  			//块中的最大值
	int startIndex;		//起始索引
	int endIndex;		//结束索引
}

        将块对象放到一个数组中统一管理,这个数组一般叫做索引表。通过索引表,我们就能确定要查找的值存在于哪一块当中。
在这里插入图片描述
在这里插入图片描述
        比如上面的数据,我们可以轻易地发现,30就在第三个块当中(这个块级寻找的过程可以用基本查找或二分查找实现)。然后,我们再在块内使用遍历,就可以轻易找到要查找的数据30。

package BasciSeach;

public class BlockedSearchDemo1 {
    public static void main(String[] args) {
        //1.创建数组blockArr存放每一个块对象的信息
        //2.先查找blockArr确定要查找的数据属于哪一块
        //3.再单独遍历这一块数据即可

        int[] arr = {16, 5, 9, 12, 21, 18,
                    32, 23, 37, 26, 45, 34,
                    50, 48, 61, 52 ,73, 66};

        //1.把数据分块
        //分几块:总数开根号 √18 = 4.24 块左右
        //每块里 18 / 4 = 4.5 个

        //创建三个块的对象
        Block b1 = new Block(21,0,5);
        Block b2 = new Block(32,6,11);
        Block b3 = new Block(50,12,17);

        //定义数组用来管理三个块的对象(索引表)
        Block[] blockArr = {b1, b2, b3};

        //定义一个变量用来记录要查找的元素
        int number = 32;

        //调用方法,传递索引表,数组,要查找的元素,返回要查找的数据索引
        int index = getIndex(blockArr, arr, number);

        //打印
        System.out.println(index);
    }

    //利用分块查找的原理,查询number的索引
    private static int getIndex(Block[] blockArr, int[] arr, int number) {
        //1.确定number在哪一块中,找到这一块的索引
        int indexBlock = findIndexBlock(blockArr, number);

        if(indexBlock == -1){
            //表示number过大,不在任何一块当中
            return -1;
        }

        //获取这一块的起始索引和结束索引
        int startIndex = blockArr[indexBlock].getStartIndex();
        int endIndex = blockArr[indexBlock].getEndIndex();

        //遍历这一部分的数组
        for(int i = startIndex; i <= endIndex; i++) {
            if(arr[i] == number) {
                return i;
            }
        }
        //遍历完整块都没找到,返回-1
        return -1;
    }

    //定义一个方法,用来确定number在哪一块中
    private static int findIndexBlock(Block[] blockArr, int number) {
        /*//创建三个块的对象
        Block b1 = new Block(21,0,5);
        Block b2 = new Block(32,6,11);
        Block b3 = new Block(50,12,17);*/

        //从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的
        for (int i = 0; i < blockArr.length; i++) {
            if(number <= blockArr[i].getMax()) {
                return i;
            }
        }
        //当前数字过大,每一块中都找不到
        return -1;
    }
}

class Block {
    private int max;
    private int startIndex;
    private int endIndex;

    public Block() {
    }

    public Block(int max, int startIndex, int endIndex) {
        this.max = max;
        this.startIndex = startIndex;
        this.endIndex = endIndex;
    }

    public int getMax() {
        return max;
    }

    public int getStartIndex() {
        return startIndex;
    }

    public int getEndIndex() {
        return endIndex;
    }
}

        如果数据本身没有规律。只需要保证数据间尚无交集,就可以完成分块。我们可以新增一个 min 变量,来记录每块中最小的值。
在这里插入图片描述
        如果查找的过程中还需要添加新数据呢?常见需求:在1~1000之间获取100个随机数,要求这些数据不重复,那就需要每添加一个数据就进行一次查找,查看该数据是否已经存在。这个时候就可以利用分块查找,把这100个数据分成10块,每一块规定要存储数据的范围。
在这里插入图片描述
        将要生成的数据放在相应块中,在各块中再进行遍历查找。这种查找方式作为分块查找的改进,被重新命名为哈希查找
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值