Python绘制饼状图对商品库存进行分析

一、序言

今天来实践一下如何用Python对商品库存绘制饼状图进行分析

二、知识点

  • 文件读写
  • 基础语法
  • 字符串处理
  • 文件生成
  • 数据构建

三、效果展示

一目了然

四、代码展示

兄弟们学习python,有时候不知道怎么学,从哪里开始学。掌握了基本的一些语法或者做了两个案例后,不知道下一步怎么走,不知道如何去学习更加高深的知识。
那么对于这些大兄弟们,我准备了大量的免费视频教程,PDF电子书籍,以及源代码!
直接在文末名片自取即可,还会有大佬解答!

# 导入系统包
import platform
from flask import Flask, render_template
from pyecharts import options as opts
from pyecharts.charts import *
from pyecharts.faker import Faker
 
web = Flask(__name__)
 
# 数据构建
x_data = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
y_data = [1186, 1246, 1346, 1086, 1430, 1064]
 
data = [[x_data[i], y_data[i]] for i in range(len(x_data))]
 
 
def pie_charts() -> Pie():
    # 实例化对象
    pie = Pie()
    # 采用Flask库直接获取颜色
    pie.add("", data, color=Faker.rand_color())
    # 全局置标题、标签
    pie.set_global_opts(
        title_opts=opts.TitleOpts(title="如何绘制饼状图分析商品分类", subtitle="菜鸟实战,坚持学习!"),
        legend_opts=opts.LegendOpts(type_="scroll", orient="vertical", pos_top="20%", pos_left="0%")
    )
    return pie
 
 
# 获取对象
p = pie_charts()
# 绘制图形,生成HTML文件的
p.render('./templates/pie_charts.html')
 
 
# 添加路由显示图表
@web.route('/')
def index():
    return render_template('pie_charts.html')
 
 
if __name__ == "__main__":
    # 运行项目
    web.run(debug=False)
 
print("Python 版本", platform.python_version())

最后给大家分享一套Python视频,涵盖了常见的各种案例,希望能帮助大家:代码总是学完就忘记?100个Python实战项目!让你沉迷学习丨学以致用丨下一个Python大神就是你!

### Python 数据分析案例示例 以下是几个常见的 Python 数据分析案例及其对应的代码实现: #### 案例一:药店销售数据分析 通过分析药品销售额、客户行为等指标,帮助企业优化库存管理及市场策略。 ```python import pandas as pd # 加载数据 data = pd.read_csv('pharmacy_sales.csv') # 查看前几行数据 print(data.head()) # 计算每种药品的总销量 total_sales_per_product = data.groupby('product_name')['sales'].sum() print(total_sales_per_product) # 分析按月份的销售趋势 data['date'] = pd.to_datetime(data['date']) data.set_index('date', inplace=True) monthly_sales = data.resample('M').sum()['sales'] print(monthly_sales) ``` 此代码展示了如何加载 CSV 文件计算产品销量汇总以及月度销售趋势[^1]。 --- #### 案例二:用户购买金额预测 基于多变量回归模型,预测用户的购买金额,从而辅助企业制定精准营销计划。 ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 假设数据集包含多个特征列和目标列 'revenue' X = data[['age', 'gender', 'income', 'location', 'frequency']] y = data['revenue'] # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建线性回归模型 model = LinearRegression() model.fit(X_train, y_train) # 预测测试集结果 predictions = model.predict(X_test) # 评估模型性能 mse = mean_squared_error(y_test, predictions) print(f'Mean Squared Error: {mse}') ``` 该部分实现了构建线性回归模型的过程,利用均方误差 (Mean Squared Error) 来衡量模型表现[^5]。 --- #### 案例三:数据可视化——药品类别分布 使用 `matplotlib` 和 `seaborn` 库展示药品类别的占比情况。 ```python import matplotlib.pyplot as plt import seaborn as sns # 统计各类别药品的数量 category_counts = data['category'].value_counts() # 创建饼状图 plt.figure(figsize=(8, 6)) sns.barplot(x=category_counts.index, y=category_counts.values) plt.title('Drug Category Distribution') plt.xlabel('Category') plt.ylabel('Count') plt.xticks(rotation=45) plt.show() ``` 这段代码演示了如何绘制条形以直观呈现药品分类的比例系[^2]。 --- #### 案例四:快速生成列表简化操作 在实际开发过程中,经常需要对原始数据进行预处理。下面是一些简洁高效的技巧用于替代冗长的传统 For 循环结构。 ```python # 使用列表推导式代替传统方法 squares_for_loop = [] for num in range(1, 6): squares_for_loop.append(num ** 2) squares_list_comprehension = [num ** 2 for num in range(1, 6)] print(squares_for_loop) # 输出: [1, 4, 9, 16, 25] print(squares_list_comprehension) # 输出: [1, 4, 9, 16, 25] # 结合 lambda 表达式的应用实例 multiply_by_two = list(map(lambda x: x * 2, range(1, 6))) print(multiply_by_two) # 输出: [2, 4, 6, 8, 10] ``` 这里介绍了两种方式来完成相同任务的同时也引入了匿名函数的概念以便于理解其灵活性[^3]。 --- #### 小结 以上四个例子分别涵盖了基础的数据读取探索、高级统计建模技术的应用场景以及形化表达手段等内容;另外还简单提及了一些提高编码效率的小窍门供初学者参考学习[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值