算法——Trie 树

Trie 树(前缀树字典树)是一种高效处理字符串集合的树形数据结构,核心思想是通过共享公共前缀来优化存储和查询。以下是 Trie 树的详细介绍:


1. Trie 树的基本概念

  • 结构特点

    • 每个节点表示一个字符。
    • 从根节点到某一节点的路径构成一个字符串。
    • 根节点为空字符,不存储实际内容。
    • 叶子节点(或标记节点)表示字符串的结束。
  • 示例
    存储字符串 ["apple", "app", "banana"] 的 Trie 树结构:
    在这里插入图片描述

2. Trie 树的核心操作

插入操作

  1. 从根节点开始。
  2. 逐个字符遍历待插入字符串:
    • 如果字符存在于当前节点的子节点中,移动到该子节点。
    • 否则,创建新节点并添加到当前节点的子节点。
  3. 在字符串末尾标记结束。

查找操作

  1. 从根节点开始。
  2. 逐个字符遍历待查字符串:
    • 如果字符不在当前节点的子节点中,返回 False
  3. 遍历完成后,检查最后一个节点是否被标记为结束。

删除操作

  1. 先查找字符串是否存在。
  2. 从叶子节点向上回溯,删除无分支的节点,直到遇到有多个子节点的节点或根节点。

3. Trie 树的优缺点

优点

  • 高效前缀匹配:快速查找所有以某前缀开头的字符串(如搜索提示)。
  • 避免重复存储:共享公共前缀,节省空间。
  • 时间复杂度稳定:插入、查询、删除的时间复杂度均为 O(n)(n 为字符串长度)。

缺点

  • 空间开销大:每个字符占用一个节点,可能浪费内存(尤其是字符集大时)。
  • 实现复杂:需要处理动态节点分配和指针操作。

4. Trie 树的变体与优化

  1. 压缩 Trie 树

    • 合并单分支路径,减少节点数量(如将 a -> p -> p 合并为 app)。
    • 牺牲部分插入/删除效率,优化空间。
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值