利用传感器和单类分类器识别埃及伊蚊
1. 引言
埃及伊蚊是传播多种影响人类健康的虫媒病毒的重要媒介,如黄热病、基孔肯雅热、寨卡病毒、日本脑炎和登革热等。这些病毒通过感染的雌性埃及伊蚊叮咬人类传播,而雌性蚊子通常在吸食感染人群的血液时获取病毒。
寨卡病毒自2015年在巴西首次被确认感染病例后,迅速在美洲蔓延。虽然该疾病症状通常较轻,但孕妇感染寨卡病毒会导致严重的出生缺陷,如小头畸形和其他严重的胎儿脑部缺陷。登革热是人类最重要的虫媒病毒性疾病,在全球发病率和经济影响方面可能比疟疾更严重。据估计,全球有36亿人生活在登革热风险地区,每年约有3.9亿例感染,其中9600万例有临床症状。目前,尚无针对登革热感染的许可疫苗,因此控制这些病毒传播的努力主要集中在控制埃及伊蚊的种群数量上。
传统的昆虫控制方法包括生物控制、基因技术、环境管理和化学控制等,但如果不能及时准确地了解昆虫的位置,这些方法将变得昂贵且低效。近年来,一种新的光学传感器被提出,它可以收集昆虫的时空分布信息,并结合电子陷阱来控制病媒。该传感器利用光源捕捉昆虫飞行信息,并使用机器学习算法自动对昆虫进行分类,为传统的病媒控制策略提供实时的昆虫种群估计。
以往基于光学传感器的昆虫分类主要集中在多类分类器上,如支持向量机、k近邻、随机森林和深度神经网络等。然而,在实际应用中,多类分类器假设已知所有类别的信息,这很难实现。例如,仅双翅目昆虫就估计有超过24万种,其中约12万种已被编目。因此,很难进行全面的数据收集以涵盖所有可能的物种,这导致传感器在遇到未知物种时,多类分类器可能会分配错误的类别标签。
为了解决这个问题,本文采用单类分类器来识别埃及伊蚊。单类分类器仅使用正例(目标类)进行学习,并且可