NMS极慢原因

近几天做了一个训练。

以往都是使用迁移训练的方式,主干网络都是采用预训练的参数做初始化。但这次使用的是自己改进的网络。所以采用随机初始化开始训练。训练速度都还可以。但是在测试中间过程中,NMS(算法是Soft NMS)计算速度非常慢。(我的电脑2*1080Ti, 一般batch= 32, 单GPU的测试情况下,NMS只用0.008s)。而第一轮测试的时候,NMS计算居然到了0.18s,严重影响了整个训练测试速度,忍无可忍啊!

于是,我检测了代码,首先怀疑是否为GPU版的NMS,检测结果:确实调用了GPU版本

再次,怀疑自己不小心动了NMS的参数。NMS相关的参数很少,一一与前版本对比。无误!

SO, 猜测是 loss过大,训练结果太差,导致测试的时候,分类太多,分数都很低,目标分散。这些都会导致NMS的循环增加好几十倍,似乎能解释得通。于是耐心继续训练下去(为了加快测试速度,验证想法,将top_k从300减小到150)。

epoch numNMS耗时
100.027
200.026
300.025
400.023
600.022
800.020
1000.017
1200.018
1500.016

NMS时间不断减少。果真如此!!!折腾我一晚上!跑到200 epoch时的效果跟迁移训练 10 epoch的效果相当。

看了迁移学习确实能让训练快速收敛~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值