数据分析:Pandas单变量图形分析

本文介绍使用Pandas库对Kaggle的GiveMeSomeCredits数据集进行单变量数据分析和图表绘制的方法,包括条形图、比例图及折线图的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数据分析过程中,常常会对每个或部分特征变量进行数据分析,而图形展示最为直观。今天就来学习下,如何通过pandas实现单变量的统计图。数据集依旧是Kaggle的Give Me Some Credits。

首先,读取数据。

import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('/cs-training.csv')

1.展示age变量值出现次数最多的前十个值的统计图:

data['age'].value_counts().head(10).plot.bar()

2.展示age变量值出现次数最多的前十个值占总数的比例:

(data['age'].value_counts().head(10)/len(data)).plot.bar()

3.变量age所有取值的数量统计:

plt.figure(figsize=(15,5))
data['age'].value_counts().sort_index().plot.bar()

4.age变量的折线统计图:

plt.figure(figsize=(2,5))
plt.xlim(0,120)
data['age'].value_counts().sort_index().plot.line()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值