1.人工智能的Pipeline

人工智能的Pipeline

  1. 数据清洗
    1. 清洗数据
    2. 处理数据
    3. 如何做特征工程,如何把数据做出优秀的训练集
    4. 影响后面机器学习应用,烂的数据集效果不好,质量不高
    5. ETL–Extract Transform Load
    6. Pandas/Numpy/MapReduce
  2. 数据库(数据仓库)
    1. Mysql/Redis/mongo
    2. Mysql/Postgres
    3. Hive 10亿辆车 聚类 --> 最后交给MapReduce做
    4. OLAP --HMASE
    5. spark
  3. 数据集市/数据挖掘/数据标注(50%时间)
    1. 如何生成我需要的精细的、优质的数据
    2. 数据挖掘
      1. 数据可视化
      2. 数据统计
      3. 特征工程
    3. 数据标注 (80%是监督学习/无监督学习也是为了监督学习)
      1. 自动化标注(没有人工就没有数据)
      2. 标注平台、节省人力
      3. 聚类等自动化
        1. 几乎不存在任何通用算法做自动化标注,一定是特定算法特定标注
        2. 算法人员花大量时间在标注上!
        3. 再标再跑
        4. 合理高效的标注
<think>我们正在讨论的是LlamaIndex中的QueryPipeline,而不是ClickHouse或其他系统的QueryPipeline。 根据引用[3]和引用[4]的内容,QueryPipeline是LlamaIndex库中的一个类,用于构建查询工作流。 因此,用户需要安装LlamaIndex包才能使用QueryPipeline。 安装命令: ```bash pip install llama-index ``` 注意:由于LlamaIndex的版本更新较快,建议使用较新的版本(至少v0.10.0以上)以确保包含QueryPipeline功能。 如果已经安装了旧版本的LlamaIndex,可以通过以下命令升级: ```bash pip install --upgrade llama-index ``` 另外,根据引用[3]中的示例,使用QueryPipeline可能还需要其他依赖,比如LLM(例如OpenAI、Ollama等)和向量数据库相关的包。但这些都是可选的,具体取决于你使用QueryPipeline时连接的模块。 因此,核心依赖就是llama-index包。 引用[1]和引用[2]似乎提到了其他系统中的QueryPipeline(如ClickHouse),但根据上下文,用户的问题是关于LlamaIndex的,因此我们忽略这些引用。 总结:安装llama-index包即可。</think>要使用 LlamaIndex 的 `QueryPipeline`,您需要安装以下核心依赖: ### 核心安装包 ```bash pip install llama-index ``` ### 版本要求 - **最低版本**:`llama-index >= 0.10.0`(早期版本可能不包含 `QueryPipeline` 类) - **推荐版本**:`llama-index >= 0.10.5`(包含最新优化和稳定性修复) ### 可选依赖(根据工作流需求) | 模块类型 | 安装命令 | 用途说明 | |----------------|----------------------------------|----------------------------| | OpenAI 集成 | `pip install openai` | 使用 GPT 系列模型 | | Ollama 集成 | `pip install ollama` | 本地模型部署(如 Llama3) | | 向量数据库支持 | `pip install chromadb pymilvus` | 持久化存储和检索向量数据 | | PDF 处理 | `pip install pypdf` | 解析 PDF 文档 | ### 验证安装 ```python # 验证导入是否成功 from llama_index.query_pipeline import QueryPipeline # 核心导入 from llama_index import PromptTemplate # 常用关联模块 print("QueryPipeline 导入成功!") ``` ### 安装注意事项 1. **环境隔离**:建议使用虚拟环境(如 `venv` 或 `conda`) 2. **版本冲突**:如遇导入错误,尝试升级: ```bash pip install --upgrade llama-index ``` 3. **完整依赖**:复杂工作流可能需要额外包: ```bash pip install "llama-index[all]" # 安装所有可选依赖 ``` > 引用[3]和[4]中的示例均基于 `llama-index` 包实现,无需单独安装其他查询管道库[^3][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值