可控生成之ControlNet原理

ControlNet是一种旨在通过附加条件控制大型图像生成模型的技术,以解决特定任务数据不足和精确控制难题。它通过在扩散模型中添加一个可训练副本,根据条件输入(如边缘、轮廓图等)进行控制,从而实现对生成图像的精确姿态和细节调整,且不影响原始模型性能。在Stable Diffusion模型中,ControlNet仅训练Unet编码器,降低了计算成本,并通过不同训练策略适应小规模和大规模训练场景。实验结果显示,ControlNet在各种控制条件下都能产生令人满意的生成效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单来说ControlNet希望通过输入额外条件来控制大型图像生成模型,使得图像生成模型根据可控。

1. 动机

当前文生图任务中会出现如下问题:

  • 特定任务中往往无法获取大规模的训练数据
  • 对于大部分人来说,并没有大规模计算集群资源
  • 各种图像生成任务中会有多种问题定义、用户控制条件、图像标注的形式

从而造成当前基于prompt控制的模型并不能满足特定业务需求。ControlNet的提出就是为了解决上面几个问题。

此外,我们在使用Stable Diffusion通过prompt生成图片时,很多时候我们希望能够生成一些固定姿态的物体,如下图所示,可能我们就想生成一只和最左边参考图像中鹿的姿态一摸一样的鹿,很显然如果直接通过prompt很难控制,这里主要有两个难点:

  • 如何非常准确详细的描述左边鹿的姿态
### 如何在 ControlNet 中实现更好的姿态控制 为了在 ControlNet 中实现更佳的姿态控制效果,需理解该工具的工作机制以及特定配置方法。 #### 工作原理概述 ControlNet 结合了不可训练部分和可训练部分。前者保持了稳定扩散模型原有的特性;后者则允许引入外部条件以指导图像生成过程[^3]。对于姿态控制而言,这意味着可以通过指定人体关节位置或其他形态特征作为附加输入来影响最终输出的人体姿态。 #### 使用 OpenPose 进行情态捕捉 具体到姿态调整上,常用的方法之一是利用名为 OpenPose 的检测算法获取目标对象的关键点坐标,并将其转换成适合喂入网络的形式。此方式能够有效提升对人体动作细节的理解度并增强对复杂姿势的表现力[^2]。 #### 配置建议 - **选择合适的预处理模块**:当涉及到姿态估计任务时,推荐选用专门为此目的优化过的预处理器版本。 - **微调超参数设置**:适当调节学习率、迭代次数等参数有助于提高收敛速度及质量。 - **增加样本多样性**:确保训练集中包含了足够广泛的不同种类的动作实例可以帮助系统学会泛化未知情况下的表现形式。 ```python from controlnet import ControlNetModel, Preprocessor model = ControlNetModel.from_pretrained('path_to_model') preprocessor = Preprocessor(type='openpose') input_image_path = 'example_pose.jpg' output_image = model.generate(image=input_image_path, preprocessor=preprocessor) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值