【HDU1005】Number Sequence(矩阵快速幂)

记录一个菜逼的成长。。

题目链接
题目大意:
f[1] = 1,f[2] = 1,f[n] = (a*f[n-1]+b*f[n-2])%7(n > 2)
给你a,b。求f[n]。

网上好像都是找规律的。
我想用下矩阵求递推式,类似矩阵快速幂求斐波那契。
搞清楚原理后,只要稍微改动下就可以了。

我们可以构造矩阵
(f[3]f[2])=(a b1 0)(f[2]f[1]) f[3]=a+b
上式右边两个矩阵相乘是等于左边矩阵的。

不断递推会发现
(f[4]f[3])=(a2+b aba b)(f[2]f[1]) f[4]=a2+b+ab
·
·
·
(f[n]f[n1])=(a b1 0)n2(f[2]f[1])

A=(a b1 0)n2
那么 ans=(A[0][0]+A[0][1])mod7
所以我们只要知道A就行了。

#include <bits/stdc++.h>
using namespace std;
#define cl(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
typedef long long LL;
typedef pair<int,int> PII;
const int INF = 0x3f3f3f3f;
const int MOD = 7;
typedef vector<LL> vec;
typedef vector<vec> mat;
LL n;
mat mul(mat &A,mat &B)
{
    mat C(A.size(),vec(B[0].size()));
    for( int i = 0; i < A.size(); i++ ){
        for( int k = 0; k < B.size();k++ ){
            for( int j = 0; j < B[0].size();j++ ){
                C[i][j] = (C[i][j] + A[i][k] * B[k][j]);
                C[i][j] %= MOD;
            }
        }
    }
    return C;
}
mat pow(mat A,LL n)
{
    mat B(A.size(),vec(A.size()));
    for( int i = 0; i < A.size(); i++ ){
        B[i][i] = 1;
    }
    while(n > 0){
        if(n & 1)B = mul(B,A);
        A = mul(A,A);
        n >>= 1;
    }
    return B;
}
void solve(LL a,LL b)
{
    mat A(2,vec(2));
    A[0][0] = a;
    A[0][1] = b;
    A[1][0] = 1;
    A[1][1] = 0;
    A = pow(A,n-2);
    printf("%lld\n",(A[0][0]+A[0][1])%7);
}
int main()
{
    LL a,b;
    while(~scanf("%lld%lld%lld",&a,&b,&n),a)
        solve(a,b);
    return 0;
}
### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值