410. 分割数组的最大值

本文介绍了解决分割数组问题的一种高效算法——二分法。通过详细分析示例,阐述了如何在给定数组和子数组数量的情况下,找到使子数组最大值最小化的策略。文章深入探讨了二分查找在算法中的应用,以及如何通过贪心思想优化子数组的分配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

410. 分割数组的最大值

解题思路

审题之后可以得出结论,结果必定在[max(nums), sum(bums)] 这个区间内,因为左端点对应每个单独的元素构成一个子数组,右端点对应所有元素构成一个子数组。

方法1:二分法

通过示例 nums = [7,2,5,10,8] 来进行分析

m = 1, 那么整个数组作为一部分,最小的最大值为32
m = n, 那么每个元素作为一个子数组,从所有元素选取最大值,最小的最大值为 10

所以,m 的取值范围为 1 <= m <= n,因此,最大值的最小值的范围为[10,32][10, 32][10,32]

我们利用二分法查找,找出符合 m 的最大值的最小的结果。

二分过程:

lower = 10;
upper = 32;
mid = (left + right) >>> 1 = 21 (这个 21 就是一个子数组的最大容量)

我们假设刚开辟的用来存储的子数组个数 count = 1
那么根据贪心思想,我们将数组元素按顺序逐个往里放
因此就有如下过程: \

7 < 21
7 + 2 < 21
7 + 2 + 5 < 21
7 + 2 + 5 + 10 > 21

至此,我们可以看出 21 容量的子数组是无法容纳整个数组元素的,因此我们需要开辟第二个子数组来存储剩下的数组元素。
count = count + 1 = 2

10 < 21
10 + 8 <21

我们发现,两个子数组可以将整个数组元素放入,而 count 刚好等于 m,因此 [7,2,5][10, 8] 就是分割出来的两个子数组,最小的最大值为 18。

为什么是当如元素直到放不下为止?因为要求的是连续子数组,我们需要保证每个连续的子数组的元素都尽可能的接近 21。

如果我们最终得到的 count > m, 那么表示我们划分出太多的子数组,也就是意味着一个子数组的容量太小,我们需要再扩大容量,即 lower = mid + 1, 然后继续进行二分查找
如果我们最终得到的 count < m, 那么表示我们划分出太少的子数组,也就是意味着一个子数组的容量太大,需要减少容量,即 upper = mid

class Solution {
    public int splitArray(int[] nums, int m) {
        // lower: max(nums[i])
        // upper: sum(nums)
        // lower <= k < upper
        long lower = 0, upper = 0, k = 0;
        for (int i = 0; i < nums.length; i++) {
            lower = Math.max(lower, nums[i]);
            upper += nums[i];
        }
        // 进行二分查找
        long mid = 0;
        while (lower < upper) {
            mid = lower + ((upper - lower ) >> 1);
            if(canSplit(nums, m, mid)) {
                upper = mid;
            } else {
                lower = mid + 1;
            }
        }
        if (canSplit(nums, m, lower)) {
            return (int)lower;
        }
        return (int)upper;
    }
    // 检测数组是否能够分成m个非空的连续子数组,并且使得子数组之和的最大值不超过k
    private boolean canSplit(int[] nums, int m, long k) {
        // 当前子数组的sum
        long sum = 0;
        // 当前切分的数量
        long count = 0;
        for (int i = 0; i < nums.length; i++) {
            // 当前子数组和+ nums[i] 大于 k,说明在这需要切分一次,并清空子数组和sum
            if (sum + nums[i] > k) {
                count++;
                sum = 0;
            }
            //  对连续子数组进行相加
            sum += nums[i];
        }
        // 如果最后,切分的次数是小于m,那就说明存在k这样的一个分法的
        // 因为,如果说极限条件是小于m的话,那我想分成m个,
        // 那我只可能切比count更多的次数,意味着子数组和的最大值就更小
        return count < m;
    }
}

部分图片来源于网络,版权归原作者,侵删。
题目描述:给定一个非负整数数组nums和一个整数m,你需要将这个数组分成m个非空的连续子数组。设计一个算法使得这m个子数组中的最大和最小。 解题思路: 这是一个典型的二分搜索题目,可以使用二分查找来解决。 1. 首先确定二分的左右边界。左边界为数组中最大的值,右边界为数组中所有元素之和。 2. 在二分搜索的过程中,计算出分割数组的组数count,需要使用当前的中间值来进行判断。若当前的中间值不够分割成m个子数组,则说明mid值偏小,将左边界更新为mid+1;否则,说明mid值偏大,将右边界更新为mid。 3. 当左边界小于等于右边界时,循环终止,此时的左边界即为所求的结果。 具体步骤: 1. 遍历数组,找到数组中的最大值,并计算数组的总和。 2. 利用二分查找搜索左右边界,从左边界到右边界中间的值为mid。 3. 判断当前的mid值是否满足题目要求,若满足则更新右边界为mid-1; 4. 否则,更新左边界为mid+1。 5. 当左边界大于右边界时,循环终止,返回左边界即为所求的结果。 代码实现: ```python class Solution: def splitArray(self, nums: List[int], m: int) -> int: left = max(nums) right = sum(nums) while left <= right: mid = (left + right) // 2 count = 1 total = 0 for num in nums: total += num if total > mid: total = num count += 1 if count > m: left = mid + 1 else: right = mid - 1 return left ``` 时间复杂度分析:二分搜索的时间复杂度为O(logN),其中N为数组的总和,而遍历数组的时间复杂度为O(N),因此总的时间复杂度为O(NlogN)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值