Mac M1Pro 使用Langchain-Chatchat与Ollama搭建本地离线知识库
Ollama
Ollama
是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言模型,包括如Llama 3
、Phi 3
、Mistral
、Gemma
等开源的大型语言模型。
Ollama
目前支持以下大语言模型:https://ollama.com/library
进入官网下载并安装,当前安装版本为v0.3.14。
环境配置:
OLLAMA_MODELS:模型文件存放目录,默认目录为当前用户目录(mac
目录:/Users/lisi/Documents/AI_model)。
OLLAMA_HOST:Ollama服务地址,默认为127.0.0.1,如果允许其他电脑访问
Ollama(如:局域网中的其他电脑),建议设置成0.0.0.0。
OLLAMA_PORT:Ollama
服务端口,默认为11434,如果端口有冲突,可以修改设置成其他端口(如:8080等),不修改端口就不用设置了。
OLLAMA_ORIGINS:HTTP
客户端请求来源,半角逗号分隔列表,若本地使用无严格要求,可以设置成星号*,代表不受限制。
大模型使用qwen2.5:3b
ollama pull qwen2.5:3b
Embedding 模型使用bge-large-zh-v1.5
ollama pull quentinz/bge-large-zh-v1.5
LangChain-Chatchat
LangChain-Chatchat (原 Langchain-ChatGLM)
基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的 RAG 与 Agent 应用项目。
pip 安装部署
Python环境:3.8-3.11 环境
1.安装 Langchain-Chatchat
pip install langchain-chatchat -U
当前版本v0.3.1.3。
为避免依赖冲突,请将 Langchain-Chatchat 放在 Python 虚拟环境中, 比如 conda等。
2.初始化项目配置与数据目录
(1)设置 Chatchat 存储配置文件和数据文件的根目录
# on mac
export CHATCHAT_ROOT=/Users/lisi/Documents/chatchat_data