PySide6多线程处理yolov5目标检测

本文探讨了使用PySide6的QThreadPool和QRunnable两种方法在视频流中进行多线程处理,实现实时YOLOv5模型的物体检测,并显示帧率。作者分别展示了基于Qt线程池和独立线程的实现方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两种多线程处理方法:

1. QThreadPool+QRunnable方法

# -*- coding: utf-8 -*-
"""
Created on Wed Jul  6 10:05:38 2022

@author: [email protected]
"""

import uuid
import cv2
import sys
from PySide6.QtCore import Qt, QSize, QTimer, QThread, Slot, Signal, QRunnable, QThreadPool, QObject
from PySide6.QtWidgets import QApplication, QWidget, QGridLayout, QLabel, QMainWindow, QStatusBar, QMainWindow
from PySide6.QtGui import QPixmap, QImage, QIcon
import torch
from time import time
import numpy as np
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# model = torch.hub.load(r"D:\Files\yolov5", "yolov5s6", source='local', pretrained=True, force_reload=True)
model.to('cpu')

# img = cv2.imread(PATH_TO_IMAGE)
classes = model.names
# results = model(imgs, size=640)  # includes NMS
def plot_boxes(results, frame):
        labels, cord = results
        n = len(labels)
        x_shape, y_shape = frame.shape[1], frame.shape[0]
        for i in range(n):
            row = cord[i]
            if row[4] >= 0.2:
                x1, y1, x2, y2 = int(row[0]*x_shape), int(row[1]*y_shape), int(row[2]*x_shape), int(row[3]*y_shape)
                bgr = (0, 255, 0)
                cv2.rectangle(frame, (x1, y1), (x2, y2), bgr, 2)
                cv2.putText(frame, classes[int(labels[i])], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.9, bgr, 2)

        return frame

def score_frame(frame):
    """
    转换标签和坐标
    """
    frame = [frame]
    results = model(frame,size=640)
    labels, cord = results.xyxyn[0][:, -1].cpu().numpy(), results.xyxyn[0][:, :-1].cpu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值