手搓函数,实现train_test_split一样的数据集划分

在机器学习训练算法模型之前,我们一般都需要对数据集进行划分为训练集和测试集。训练集用作机器学习训练得出算法模型,而测试集用来对训练出来的模型进行检验。 

在sklearn中可以从sklearn.model selection中调用train_test_split函数方法实现数据集的划分。

1、train_test_split

今天我们来手搓一个函数实现train_test_split一样的数据集划分。

话不多说,我们直接先上代码!

from random import randrange
from random import seed


def train_test_split(data, proportion=0.7, random_seed=None):
    train_data = []
    seed(random_seed)
    train_size = proportion*len(data)
    data_copy = list(data)

    while len(train_data) < train_size:
        train_data_index = randrange(len(data_copy))
        train_data.append(data_copy.pop(train_data_index))
    return train_data, data_copy


data = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]
train, test = train_test_split(data, proportion=0.7)
print(train)
print(test)

data是我们要划分的数据集࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值