【AI】利用Azure AI的元数据过滤器提升 RAG 性能并增强向量搜索案例

【AI】利用Azure AI的元数据过滤器提升 RAG 性能并增强向量搜索案例

在检索增强生成 (RAG) 设置中,用户指定的过滤器(无论是隐含的还是明确的)通常在向量搜索中被忽视,因为向量搜索主要关注语义相似性。
在某些场景中,确保特定的查询仅使用预定义的(子)文档集来回答至关重要。通过使用“元数据”或标签,您可以强制执行每种类型用户查询应使用的文档类型。这甚至可以变成一种安全覆盖策略,其中每个用户的查询都带有他们的凭据/权限级别标签,以便使用与其权限级别相对应的文档来回答他们的查询。
当 RAG 数据由许多单独的数据对象(例如,文件)组成时,每个数据对象都可以用一组预定义的元数据标记。然后,这些标签可以在向量或混合搜索中用作过滤器。元数据可以与向量嵌入一起集成到搜索索引中,然后用作过滤器。
在本博客中,我们将演示一个示例实现……

在这里插入图片描述

推荐超级课程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值