- 博客(10)
- 收藏
- 关注
原创 5分钟理解Focal Loss与GHM
Focal Loss Focal Loss的引入主要是为了解决难易样本数量不平衡(注意,有区别于正负样本数量不平衡)的问题,实际可以使用的范围非常广泛,为了方便解释,还是拿目标检测的应用场景来说明: 单阶段的目标检测器通常会产生高达100k的候选目标,只有极少数是正样本,正负样本数量非常不平衡。我们在计算分类的时候常用的损失——交叉熵的公式如下: 为了解决正负样本不平衡的问题,我们通常会在交叉熵损失的前面加上一个参数 alpha,即: 但这并不能解决全部问题。根据正、负、难、易,样本一共可以分为以下四类
2021-03-15 10:54:20
454
原创 argparse模块用法实例详解
argparse模块用法实例详解 argsparse是python的命令行解析的标准模块,内置于python,不需要安装。这个库可以让我们直接在命令行中就可以向程序中传入参数并让程序运行。 港真的,今天是我第一次学习argsparse。因为用不到,自然也就没有学习的动力。但是现在电脑有点卡,每次打开pycharm太卡了,逼得我不得不开始使用命令行来测试代码。 传入一个参数 我们先在桌面新建“arg学习”的文件夹,在该文件夹中新建demo.py文件,来看一个最简单的argsparse库的使用的例子。 impo
2021-03-10 10:49:46
255
原创 IndexError: index 69 is out of bounds for axis 1 with size 52 yolov3数据加载报错
IndexError: index 69 is out of bounds for axis 1 with size 52 生成0矩阵的代码: labels[feature_size] = np.zeros(shape=(feature_size, feature_size, 3, 5 + cfg.CLASS_NUM)) 中心点计算: cx_offset, cx_index = math.modf(cx * feature_size / cfg.IMG_WIDTH)
2021-01-31 18:16:28
1079
原创 pytorch 全链接网络实现 手写MNIST数据集识别 附带保存图像
pytorch 全链接网络实现 手写MNIST数据集识别 附带保存图像 mnist数据集图像大小 1* 28 * 28 首先我们确定网络结构: 第一层:784 * 256 + BN层 + RELU激活 第二层:256 * 128 + BN层 + RELU激活 第三层:128* 10 784也就是把28*28,可以理解为把图像数据size为一排输入网络,中间层的256 与128 的设置看情况,最好设置为2的n次方,这样能够方便电脑的计算,bn层的作用是把数据压缩到指定范围,方便损失函数的计算。 接下来依
2020-11-30 16:19:18
318
原创 opencv 教程2 画图操作 阈值操作 像素操作与或非 图像掩膜操作 图像融合
opencv 教程2 画图操作 阈值操作 像素操作与或非 1.画图操作: 1)画多边形 import cv2 as cv import numpy as np img=np.zeros((400,400,3)) #黑色背景 pts=np.array([[100,200],[200,250],[250,300],[300,380]])#各个顶点 cv.polylines(img,[pts],1,(0,255,0),thickness=3)#画图 cv.imshow("lines",img)
2020-11-05 14:57:21
348
原创 opencv PIL 生成简单随机验证码
生成简单验证码(可旋转) import random from PIL import ImageFont ,ImageDraw, Image import numpy as np import cv2 as cv def ranchar():#随机文字 a = chr(np.random.randint(65,90)) b = chr(np.random.randint(97, 122)) c = str(np.random.randint(0, 9)) retur
2020-11-03 17:36:21
298
原创 PIL常用操作 基本操作
PIL常用操作 基本操作 from PIL import Image,ImageDraw,ImageFilter,ImageFont image=Image.open('test01.jpg') # image.show() # img1=image.filter(ImageFilter.BLUR)#模糊 # img2=image.filter(ImageFilter.DETAIL )#增强饱和度 # img3=image.filter(ImageFilter.CONTOUR)#轮廓 # img4=im
2020-10-29 10:52:27
523
原创 打印直角三角形 等边三角形 python
打印直角三角形 等边三角形 python 1.直角三角形 for i in range(5): for j in range(1+i): print("*",end='') print() 2.等腰三角形 for i in range(4):#0 1 2 3 for j in range(3-i):#3 2 1 0 print(' ',end='') for k in range(1+2*i):#1,3,5,7 pri
2020-10-28 15:39:39
414
原创 BP算法 反向传播算法 pyhton实现
BP算法 反向传播算法 简易理解 先提出一个问题:怎样拟合一条线性函数?? 1. 什么是BP反向传播算法? 反向传播算法 2. 为什么要用反向传播算法? 3. 代码实现
2020-10-19 11:19:38
394
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人