KNN最优k的选取【学习曲线】

本文探讨了如何选择KNN算法的最佳k值,通过参数学习曲线和K折交叉验证的方法。介绍了K折交叉验证的工作原理,强调了随机种子对模型稳定性的影响,并提供了带交叉验证的学习曲线代码实操,包括数据归一化的概念和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

怎样选择一个最佳的 k呢?
在这里我们要使用机器学习中的神器:参数学习曲线。
参数学习曲线是一条以不同的参数取值为横坐标,不同参数取值下的模型结果为纵坐标的曲线

# 1. 导入所需要的模块和库
import numpy as np 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.datasets import load_breast_cancer 
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# 2. 建立数据集
data = load_breast_cancer()
X = data.data 
y = data.target
X_train,X_test,y_train,y_test = train_test_split(X,y,# 特征和标签
                    test_size=0.3,random_state=420)  # 测试集所占的比例                   
# 3. 绘制学习曲线
# 设置两个列表保存生成的评估结果
train_score_list = []
test_score_list = []
# 循环不断改变k值, 重新建模, 重新训练, 然后评估
# k = 1- 20
for k in range(1, 21):
    # 实例化
    knn = KNeighborsClassifier(n_neighbors=k)
    # 采用训练集进行训练
    knn.fit(X_train, y_train)
    # 评估模型
    # 可以评估模型在训练集上的表现情况
    train_score_list.append(knn.score(X_train, y_train))
    # 评估在测试集上的表现情况
    test_score_list.append(knn.score(X_test, y_test))
# 4. 绘制成折线图
plt.figure(dpi=200)
plt.plot(range
### 回答1: 要绘制KNN分类器的准确率随着K值变化的曲线,可以按照以下步骤进行: 1. 导入所需的库,包括numpy、matplotlib和sklearn中的KNeighborsClassifier。 ```python import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier ``` 2. 准备数据集。这里我们使用sklearn中的鸢尾花数据集作为示例数据集。 ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` 3. 定义一个函数,用于计算KNN分类器在给定K值下的准确率。 ```python def knn_accuracy(X, y, k): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X, y) return knn.score(X, y) ``` 4. 循环计算不同K值下的准确率,并将结果保存到一个列表中。 ```python k_values = range(1, 31) accuracies = [] for k in k_values: acc = knn_accuracy(X, y, k) accuracies.append(acc) ``` 5. 绘制K值与准确率的曲线。 ```python plt.plot(k_values, accuracies) plt.xlabel('K') plt.ylabel('Accuracy') plt.title('KNN Classification Accuracy') plt.show() ``` 完整代码如下: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier def knn_accuracy(X, y, k): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X, y) return knn.score(X, y) iris = load_iris() X = iris.data y = iris.target k_values = range(1, 31) accuracies = [] for k in k_values: acc = knn_accuracy(X, y, k) accuracies.append(acc) plt.plot(k_values, accuracies) plt.xlabel('K') plt.ylabel('Accuracy') plt.title('KNN Classification Accuracy') plt.show() ``` 此代码将生成一个图形,其中X轴是K值,Y轴是准确率。 ### 回答2: K最近邻算法(K-Nearest Neighbors, KNN)是一种广泛使用的机器学习算法之一,用于分类和回归问题。在KNN算法中,准确率是衡量算法性能的重要指标之一。当选择不同的K值时,KNN分类器的准确率会发生变化。 K值代表用于进行分类的邻居个数。一般来说,较小的K值会导致模型过度拟合,而较大的K值会导致欠拟合。因此,我们通常需要通过交叉验证来选择适当的K值。 当K值较小时,KNN算法往往能够很好地捕捉到数据的细节,从而得到较高的准确率。但是,当K值过小,容易受到噪声数据的影响,从而导致过拟合。当K值较大时,模型更加平滑,能够更好地处理噪声数据,但是可能会忽略掉样本间的细微差别,导致欠拟合。 为了展示准确率随K值变化的曲线,我们可以按以下步骤进行实验: 1. 选择一个具体的数据集,例如Iris数据集。 2. 将数据集分为训练集和测试集。 3. 编写KNN算法代码,并通过训练集训练模型。 4. 选择一系列不同的K值,例如1到10。 5. 对每个K值,使用测试集评估准确率。 6. 绘制K值与准确率的曲线图。 根据实验结果,我们可以观察到随着K值的增大,准确率逐渐下降,然后趋于平稳。通常情况下,K值的选择应该在能够保持一定模型能力和泛化能力之间找到平衡点。 总之,准确率随K值变化的曲线可以通过实验得到,以帮助选择合适的K值。为了得到更加准确的结果,我们还应该考虑其他因素,如特征选取和模型调参等。 ### 回答3: KNN是一种常用的分类算法,其中k代表近邻的数量。我们可以通过改变k的值来观察KNN算法在不同k值下的分类准确率变化情况。 一般来说,当k值较小时,模型对于噪声数据敏感,容易过拟合;而当k值较大时,模型对于噪声数据不敏感,容易产生欠拟合。因此,我们通常需要通过多次实验来找到一个合适的k值。 实验结果显示,随着k值的增大,KNN算法的分类准确率会先增高后减低。初始阶段,k值的增大会使得算法对周围多个数据点的共识分类,准确率随之提高。然而,当k值过大时,模型会受到邻近较远数据点的影响,从而降低准确率。 在选择合适的k值时,我们可以使用交叉验证的方法来找到最佳的k值。交叉验证将数据集分为训练集和测试集,并多次重复随机划分。通过在不同的k值下计算平均准确率,可以找到最优的k值。 总之,KNN算法的准确率随k值的变化呈现出先增高后减低的趋势。我们可以通过交叉验证的方式找到最佳的k值,从而优化KNN算法的分类性能。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值