chatgpt-vs-deepseek的用户调研

想做个用户调研,麻烦各位大佬评论区回复下: 对于下面这样的chatAI 试用地址:https://chatgpt-vs-deepseek.com,有多少用户需要?我办公时经常会用到,因为有时候需要多个模型的最优结果。

需要用到的评论区扣 1,

不需要用到的评论区扣 2,

不关注的评论区扣3。

多谢。

### 使用 DeepSeekChatGPT 进行股票投资分析的方法和策略 #### 利用 DeepSeek 的优势进行市场数据挖掘 DeepSeek 能够利用其强大的自然语言处理能力以及对中文环境的高度适应性来解析大量的金融新闻、公告和其他文本资料。这使得投资者可以获取最新的市场动态并识别潜在的投资机会[^1]。 对于量化金融领域而言,DeepSeek 可以为分析师提供更加精确的数据支持,通过深度学习算法自动筛选出有价值的信息片段用于进一步的研究工作。例如,可以从海量的历史行情记录中提取特征参数作为机器学习模型训练的基础素材,从而提高预测准确性。 ```python import deepseek as ds # 假设有一个函数可以从DeepSeek API 获取最新财经资讯 news_data = ds.get_financial_news() for article in news_data: sentiment_score = analyze_sentiment(article['content']) if sentiment_score > threshold: potential_opportunities.append((article, sentiment_score)) ``` #### 结合 ChatGPT 实现交互式研究助理功能 另一方面,ChatGPT 凭借出色的对话理解和生成性能,在辅助个人完成复杂的金融市场调研方面表现出色。用户可以通过简单的提问获得关于特定公司基本面状况、行业趋势等方面的专业见解;甚至还可以模拟不同情景下的资产配置方案评估过程[^2]。 值得注意的是,虽然当前版本的 ChatGPT 并不具备直接访问实时股市报价的能力,但它可以根据已有的知识库为用户提供合理的建议框架,并指导他们如何运用其他资源来进行最终判断。 ```python from transformers import pipeline chatgpt_model = "your_chatgpt_model" nlp_pipeline = pipeline('text-generation', model=chatgpt_model) query = input("请输入您想要咨询的内容:") response_text = nlp_pipeline(query)[0]['generated_text'] print(f"根据您的查询得到的回答如下:\n{response_text}") ``` 综上所述,将这两种先进的人工智能工具结合起来应用于股票投资决策过程中,不仅可以显著提升工作效率,还能够在一定程度上降低人为因素带来的风险暴露水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值