61、乳腺癌诊断中的群体优化与多级阈值处理

乳腺癌诊断中的群体优化与多级阈值处理

1 背景与目标

在乳腺癌诊断中,人们假设可以通过描述图像中均匀区域的形态特征来区分恶性肿瘤,而无需考虑这些区域是否对应任何语义对象。在亮度空间中由聚类确定的区域与癌症类别之间可能存在隐式映射,这足以在诊断决策支持系统中实际应用。为了找到这种映射,研究人员尝试使用三种群体优化算法,其中阈值参数的调整由分类器的反馈驱动。

2 多级阈值处理与群体优化

2.1 图像阈值处理

图像阈值处理是图像处理领域的关键技术。通常,选择最佳阈值集的标准基于图像直方图,但基于直方图的标准不能保证获得高诊断准确性。因此,使用预测准确性来评估阈值集,通过这种方式提取的对象通常没有医学解释,但假设其形态特征可以区分良性和恶性病例。

2.2 阈值评估方案

阈值评估方案类似于通常应用于特征选择的包装策略,具体步骤如下:
1. 将待评估的阈值集应用于分割 225 张良性和 225 张恶性图像。
2. 使用 3 个特征测量分割后的对象:区域面积与图像总面积的比率、区域周长与所有区域周长总和的比率、区域欧拉数与所有区域欧拉数总和的比率。对于每张图像,计算 (n_f = 3(K + 1)) 个特征,其中 (K) 是阈值的数量。
3. 使用 k - 最近邻(kNN)分类器对图像进行分类,参数 (k = 7) 是通过实验选择的。使用 n 折交叉验证技术估计 kNN 分类器的预测准确性,每一折是代表 1 名患者的 9 张图像,即同一患者的图像不会同时出现在训练集和测试集中。

2.3 群体智能算法

搜索最佳阈值是一个 NP 难问题,经典方法仅在阈值

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值