乳腺癌诊断中的群体优化与多级阈值处理
1 背景与目标
在乳腺癌诊断中,人们假设可以通过描述图像中均匀区域的形态特征来区分恶性肿瘤,而无需考虑这些区域是否对应任何语义对象。在亮度空间中由聚类确定的区域与癌症类别之间可能存在隐式映射,这足以在诊断决策支持系统中实际应用。为了找到这种映射,研究人员尝试使用三种群体优化算法,其中阈值参数的调整由分类器的反馈驱动。
2 多级阈值处理与群体优化
2.1 图像阈值处理
图像阈值处理是图像处理领域的关键技术。通常,选择最佳阈值集的标准基于图像直方图,但基于直方图的标准不能保证获得高诊断准确性。因此,使用预测准确性来评估阈值集,通过这种方式提取的对象通常没有医学解释,但假设其形态特征可以区分良性和恶性病例。
2.2 阈值评估方案
阈值评估方案类似于通常应用于特征选择的包装策略,具体步骤如下:
1. 将待评估的阈值集应用于分割 225 张良性和 225 张恶性图像。
2. 使用 3 个特征测量分割后的对象:区域面积与图像总面积的比率、区域周长与所有区域周长总和的比率、区域欧拉数与所有区域欧拉数总和的比率。对于每张图像,计算 (n_f = 3(K + 1)) 个特征,其中 (K) 是阈值的数量。
3. 使用 k - 最近邻(kNN)分类器对图像进行分类,参数 (k = 7) 是通过实验选择的。使用 n 折交叉验证技术估计 kNN 分类器的预测准确性,每一折是代表 1 名患者的 9 张图像,即同一患者的图像不会同时出现在训练集和测试集中。
2.3 群体智能算法
搜索最佳阈值是一个 NP 难问题,经典方法仅在阈值