23、大数据即众多小数据:使用Pandas UDF

大数据即众多小数据:使用Pandas UDF

在数据处理和分析领域,利用用户自定义函数(UDF)可以极大地扩展工具的功能。本文将深入探讨如何使用Pandas UDF来处理大数据,挖掘数据的价值。

1. 标量UDF与冷启动:系列迭代器UDF

在PySpark 3.0+版本中,有一类特殊的标量UDF,将系列迭代器UDF和多系列迭代器UDF这两种类型结合起来。其在处理需要进行昂贵冷启动操作的场景中非常有用。冷启动指的是在处理数据之前,需要在处理步骤开始时执行一次的操作,比如反序列化本地机器学习模型。

下面以 f_to_c2 函数为例,展示系列迭代器UDF的使用:

from time import sleep
from typing import Iterator
import pandas as pd
import pyspark.sql.functions as F
import pyspark.sql.types as T

@F.pandas_udf(T.DoubleType())
def f_to_c2(degrees: Iterator[pd.Series]) -> Iterator[pd.Series]:  
    """Transforms Farhenheit to Celcius."""
    sleep(5)  
    for batch in degrees: 
        yield (batch - 32) * 5 / 9  

在使用这个函数时,我们可以对 gsod

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值