会议雕塑
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
31、人工智能与机器学习技术全解析
本文全面解析了人工智能和机器学习的核心技术,从基础概念到实际应用案例均有详细阐述。内容涵盖监督学习、无监督学习、强化学习等主要方法,以及决策树、支持向量机、神经网络等主流算法。深入探讨了数据预处理、特征工程、模型训练与评估等关键环节,并介绍了卷积神经网络、自然语言处理、目标检测和图像分割等前沿技术。同时,还分析了模型部署、应用案例以及未来发展趋势,包括强化学习、联邦学习和可解释人工智能。此外,文章还涉及了数据隐私、模型可解释性等挑战及应对策略,为读者提供了一站式的技术全貌。原创 2025-09-12 05:23:09 · 27 阅读 · 0 评论 -
30、探索 Azure 认知服务:从文本处理到语音交互
本文详细介绍了 Azure 认知服务在文本处理和语音交互方面的应用,涵盖手写文本识别、情感分析、命名实体识别、文本翻译、语音识别与合成等功能。同时,通过构建 Contoso Travel 网站,展示了如何结合计算机视觉和翻译服务实现照片文本提取与翻译的完整流程。文章还提供了代码示例、优化建议以及未来拓展方向,为开发者提供了全面的实践指南。原创 2025-09-11 14:49:32 · 10 阅读 · 0 评论 -
29、探索Azure认知服务:开启AI应用新征程
本文全面介绍了Azure认知服务,包括AI即服务的概念、Azure认知服务的主要类别(视觉、语言、语音、决策),以及如何获取密钥和端点来调用API。文章通过示例代码详细演示了如何使用Python和C#调用服务,还探讨了计算机视觉服务的高级功能如空间分析,并提供了综合应用案例。无论是小型项目还是企业级应用,Azure认知服务都能帮助开发者快速集成AI功能。原创 2025-09-10 16:19:15 · 13 阅读 · 0 评论 -
28、自然语言处理中的预训练模型应用与BERT技术解析
本博客深入探讨了自然语言处理(NLP)中的预训练模型应用,重点解析了BERT技术及其在多个NLP任务中的实践。内容涵盖了使用Hugging Face的预训练变压器模型进行多语言文本翻译,BERT的训练机制及其在问答系统和情感分析中的应用,以及如何通过微调提升模型性能。此外,还介绍了NLP技术的关键对比、未来趋势以及实践建议,帮助开发者更好地理解和应用相关技术。原创 2025-09-09 11:28:13 · 7 阅读 · 0 评论 -
27、自然语言处理:文本分类与机器翻译技术解析
本文深入解析了自然语言处理中的文本分类与机器翻译技术。在文本分类部分,介绍了简单卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)以及使用预训练模型(如 Hugging Face 的模型)进行分类的方法。在机器翻译部分,详细阐述了基于 LSTM 的编码器-解码器模型和基于 Transformer 的编码器-解码器模型,并提供了使用 KerasNLP 构建英语-法语翻译模型的具体实现步骤。此外,还涵盖了模型评估指标(如准确率、F1-score、BLEU 分数)、优化方法(如数据增强、超原创 2025-09-08 10:44:58 · 5 阅读 · 0 评论 -
26、自然语言处理:文本预处理、嵌入与分类实战
本博客详细介绍了自然语言处理中的核心步骤,包括文本预处理、词嵌入和文本分类的实战应用。文章通过Keras和Scikit-Learn等工具,展示了如何将原始文本数据转换为可用于神经网络的向量形式,并构建了多种文本分类模型,包括简单的词袋模型、基于n-元语法的模型以及卷积神经网络(CNN)模型。此外,还讨论了模型优化策略,如使用TextVectorization层自动化文本处理、调整超参数、应用正则化和早停策略等。最后,文章展望了自然语言处理领域的未来发展方向,并提供了一个完整的流程图来展示文本分类模型的构建与原创 2025-09-07 09:46:48 · 5 阅读 · 0 评论 -
25、计算机视觉与自然语言处理:从目标检测到文本处理的技术之旅
本博客深入探讨了计算机视觉中的目标检测技术和自然语言处理(NLP)的核心概念。文章首先介绍了基于COCO数据集的目标检测模型及其局限性,并详细讲解了如何使用Azure Custom Vision服务快速构建自定义目标检测模型。随后,文章转向自然语言处理,涵盖了文本预处理、词嵌入、神经网络构建等关键步骤,并分析了目标检测与NLP在智能安防、智能客服、自动驾驶和医疗等领域的应用。最后,文章展望了这两个技术领域的发展趋势,并为开发者提供了学习建议和实践方向。原创 2025-09-06 15:52:20 · 7 阅读 · 0 评论 -
24、目标检测算法:R-CNN、Mask R-CNN与YOLO的深入解析
本文深入解析了主流的目标检测算法,包括R-CNN系列(R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN)和YOLO系列(尤其是YOLOv3),从原理、实现步骤到实际应用进行了全面介绍。文章对比了不同算法在准确性与实时性上的表现,并通过代码示例展示了如何使用预训练模型进行目标检测和图像处理。最后,文章总结了目标检测技术的未来发展趋势,如算法融合、轻量化模型和多模态融合等方向。原创 2025-09-05 09:22:21 · 8 阅读 · 0 评论 -
23、面部识别与目标检测技术详解
本文详细介绍了面部识别和目标检测技术,重点讨论了基于迁移学习的面部识别方法,包括使用VGGFace和ArcFace进行面部特征提取和验证。同时,介绍了MTCNN在面部检测中的应用,并探讨了如何处理未知面部的问题。此外,还展示了YOLO等前沿目标检测模型的实现原理与实践,以及相关评估指标。最后总结了当前技术的挑战和未来发展方向。原创 2025-09-04 11:00:51 · 7 阅读 · 0 评论 -
22、人脸检测与识别技术全解析
本文全面解析了人脸检测与识别技术,从基础概念到实际应用进行了详细阐述。介绍了Viola-Jones算法和MTCNN等主流人脸检测方法,并结合OpenCV和深度学习模型展示了具体实现。在人脸识别部分,探讨了传统方法与迁移学习的结合,并通过ResNet50展示了如何在LFW数据集上实现高精度识别。文章还总结了人脸检测与识别技术的适用场景及未来发展趋势,涵盖了从技术原理到实际应用的完整知识体系。原创 2025-09-03 16:22:28 · 9 阅读 · 0 评论 -
21、图像和音频分类的深度学习技术
本文探讨了深度学习技术在图像和音频分类中的应用。首先介绍了如何使用Keras的图像增强层进行数据增强,并将其集成到卷积神经网络(CNN)中用于图像分类任务,例如北极野生动物图像分类。接着,文章讨论了音频分类的方法,将音频转换为频谱图后使用CNN进行分类,并以热带雨林非法伐木检测为背景,详细描述了音频分类的具体实现步骤。此外,文章还比较了不同的池化方法、图像分类与音频分类的CNN应用差异,并总结了实际应用中的注意事项和未来发展趋势。通过这些技术,可以提高模型的泛化能力和准确性,适用于资源受限的边缘设备部署。原创 2025-09-02 09:42:24 · 5 阅读 · 0 评论 -
20、卷积神经网络图像分类:从预训练模型到迁移学习与数据增强
本文介绍了如何使用卷积神经网络(CNN)进行图像分类,重点探讨了利用 Keras 提供的预训练模型(如 ResNet50V2 和 MobileNetV2)进行分类的方法。文章还详细讲解了迁移学习的原理和实现方法,并通过实验展示了其在北极野生动物图像分类任务中的高效性。此外,还介绍了数据增强技术及其在提升小数据集模型泛化能力中的应用。通过结合预训练模型、迁移学习和数据增强,实现了在仅有少量训练数据的情况下达到高准确率的图像分类效果。原创 2025-09-01 13:11:16 · 4 阅读 · 0 评论 -
19、使用Keras和TensorFlow构建卷积神经网络(CNN)
本文详细介绍了如何使用Keras和TensorFlow构建卷积神经网络(CNN),涵盖MNIST数据集和北极野生动物数据集上的训练过程。同时讲解了预训练CNN的优势与挑战,以及如何通过微调提升模型性能。文章还比较了常见的预训练模型(如ResNet、Inception和MobileNet)及其适用场景,并提供了完整的代码示例和训练流程说明,适合深度学习初学者和图像分类任务的实践者参考。原创 2025-08-31 12:32:58 · 5 阅读 · 0 评论 -
18、神经网络与卷积神经网络:原理、优化与应用
本文详细介绍了神经网络和卷积神经网络的原理、优化方法以及在计算机视觉领域的应用。内容包括神经网络中的过拟合问题及其解决方法,模型的保存与加载方式,Keras回调函数的使用,CNN的工作原理和优势,构建和训练CNN的步骤,以及迁移学习在CNN中的应用。文章最后总结了这些技术的重要性和未来的发展前景。原创 2025-08-30 11:02:26 · 4 阅读 · 0 评论 -
17、神经网络分类任务实战指南
本博客详细介绍了神经网络在分类任务中的应用,涵盖二元分类和多类别分类的模型构建、训练和评估方法。通过实战案例,如信用卡欺诈检测和人脸识别,展示了神经网络的强大分类能力。同时,博客还探讨了不同网络结构、参数配置对模型性能的影响,并提供了数据预处理、模型优化和实际应用中的注意事项。原创 2025-08-29 12:45:24 · 6 阅读 · 0 评论 -
16、深度学习与神经网络:从理论到实践
本文详细介绍了深度学习与神经网络的基础理论和实践应用。内容涵盖梯度下降算法(包括SGD和MBGD)、神经网络的基本结构与训练过程,以及使用Keras和TensorFlow构建神经网络的方法。文章还探讨了网络规模设计的原则、激活函数和优化器的选择、训练过程中的随机性影响,以及模型评估指标的使用。通过一个出租车费用预测的实际案例,展示了从数据预处理、模型构建、训练到评估的完整流程。最后总结了神经网络构建的主要步骤,并展望了深度学习的未来发展方向。适合对深度学习感兴趣的初学者和实践者参考。原创 2025-08-28 12:49:16 · 4 阅读 · 0 评论 -
15、机器学习模型的应用与深度学习基础
本博客探讨了机器学习模型的应用与深度学习的基础知识。首先介绍了 ML.NET 中如何定义数据输入输出类以及保存和加载模型的方法;接着讨论了如何结合 Xlwings 库为 Excel 添加机器学习功能,实现情感分析;随后概述了深度学习的概念及其与传统机器学习的区别,解析了神经网络的基本结构、训练流程以及优化器的作用;最后总结了不同类型的神经网络及其应用场景,并展望了深度学习的未来发展。原创 2025-08-27 15:13:20 · 4 阅读 · 0 评论 -
14、机器学习模型的操作与部署:从Python到C的全流程指南
本文全面介绍了机器学习模型从运行、调用到部署的全流程,涵盖了使用Flask创建Web服务、容器化部署、ONNX跨语言调用以及使用ML.NET在C#中构建模型等多种技术方案。通过对比不同方案的性能、环境依赖和开发难度,帮助开发者根据项目需求选择合适的技术路线。内容适用于希望将Python机器学习模型应用于C#环境或进行大规模部署的开发者。原创 2025-08-26 14:54:54 · 3 阅读 · 0 评论 -
13、机器学习中的降维与异常检测及模型部署
本博客详细介绍了机器学习中的降维技术(如t-SNE和PCA)及其在异常检测中的应用,包括信用卡欺诈检测和轴承故障预测。同时探讨了如何将Python训练的机器学习模型部署到不同语言的应用中,包括封装为Web服务、导出为ONNX格式、容器化部署以及使用C#和Excel进行模型应用。内容涵盖了代码示例、模型评估和实际应用场景,为机器学习模型的开发与部署提供了实用指导。原创 2025-08-25 14:01:48 · 6 阅读 · 0 评论 -
12、支持向量机与主成分分析:机器学习中的强大工具
本文深入介绍了机器学习中的两种经典工具——支持向量机(SVM)和主成分分析(PCA)。SVM是一种强大的分类和回归方法,通过核技巧实现高维空间的线性可分,并结合GridSearchCV进行参数调优。PCA则是一种降维技术,通过主成分分析减少数据冗余信息,广泛应用于数据可视化、噪声过滤和数据匿名化。文章通过理论与代码示例相结合的方式,展示了它们的原理、应用场景及实际操作方法。最后,还讨论了SVM与PCA的综合应用,以及它们未来的发展趋势。原创 2025-08-24 12:45:53 · 4 阅读 · 0 评论 -
11、支持向量机:超参数调优、数据归一化与面部识别应用
本文详细介绍了支持向量机(SVM)在实际应用中的关键步骤,包括超参数调优、数据归一化处理以及使用管道化方法优化模型训练流程。同时,通过LFW人脸数据集展示了SVM在面部识别任务中的实现过程,比较了不同核函数和分类器的性能差异,并结合交叉验证和混淆矩阵评估模型效果。文章旨在帮助读者掌握SVM的核心技巧及其在实际场景中的应用方法。原创 2025-08-23 09:55:32 · 3 阅读 · 0 评论 -
10、机器学习中的文本分类、推荐系统与支持向量机
本文探讨了机器学习中的三个重要主题:文本分类、推荐系统和支持向量机(SVM)。首先介绍了文本分类的基本概念和应用,例如通过概率预测垃圾邮件。接着概述了推荐系统的类型,包括基于流行度、协同和基于内容的系统,并重点介绍了基于余弦相似度的电影推荐系统的实现过程。随后深入讲解了支持向量机的工作原理,包括决策边界、支持向量、核函数和核技巧,并通过代码示例展示了其在人脸识别中的应用。最后,文章讨论了文本分类和推荐系统的优化思路,并对相关技术的未来发展进行了展望。原创 2025-08-22 14:15:29 · 3 阅读 · 0 评论 -
9、文本分类:从预处理到实际应用
本文介绍了文本分类的基本流程,从文本预处理到实际应用,涵盖了常见的向量化技术如CountVectorizer、TfidfVectorizer和HashingVectorizer的使用场景和参数调整。文章通过情感分析和垃圾邮件过滤两个实际案例,详细展示了如何使用Scikit-Learn进行文本处理、模型训练和验证。重点讨论了朴素贝叶斯算法在文本分类中的应用,并通过具体示例解释了贝叶斯定理和拉普拉斯平滑的实现原理。最后总结了文本分类的关键步骤和优化方向。原创 2025-08-21 10:49:01 · 5 阅读 · 0 评论 -
8、机器学习分类模型:从信用卡欺诈检测到文本分类
本文介绍了机器学习在分类模型中的应用,涵盖了信用卡欺诈检测、多分类问题、数字识别、文本分类等多个领域。重点讨论了逻辑回归、随机森林、梯度提升等算法的使用,以及如何评估分类模型的性能。此外,还详细讲解了文本分类的处理流程,包括文本向量化、情感分析、朴素贝叶斯应用及电影推荐中的文本相似度计算。旨在为读者提供从理论到实践的完整知识体系。原创 2025-08-20 16:08:45 · 2 阅读 · 0 评论 -
7、机器学习中的分类模型:原理、评估与实践
本文详细介绍了机器学习中的分类模型,重点讲解了逻辑回归的基本原理、常见评估指标(如准确率、精确率、召回率、F1分数等)以及分类数据的处理方法(标签编码与独热编码)。通过泰坦尼克号乘客生存预测的实践案例,展示了从数据预处理、模型训练到评估的完整流程。此外,还讨论了逻辑回归的优化策略(如特征工程、正则化)以及分类模型的未来趋势(如深度学习和集成学习)。原创 2025-08-19 15:14:06 · 3 阅读 · 0 评论 -
6、机器学习中的回归与分类模型
本文详细介绍了机器学习中的回归与分类模型。首先探讨了交叉验证和回归模型的评估指标,如R平方(R²)、均方误差(MSE)和平均绝对误差(MAE),并通过预测出租车费用的案例展示了回归模型的实际应用。随后,文章介绍了分类模型,重点讲解了逻辑回归及其评估指标,如准确率、精确率、召回率和F1得分,并通过多个分类算法(如决策树、随机森林和梯度提升)展示了分类模型的应用场景。最后,总结了回归与分类模型的重要性,并展望了未来机器学习的发展方向。原创 2025-08-18 16:57:32 · 3 阅读 · 0 评论 -
5、机器学习中的回归模型与评估方法
本文介绍了机器学习中常用的回归模型,包括决策树、随机森林、梯度提升机和支持向量机。详细探讨了这些模型的基本原理、应用场景以及优缺点,并讨论了如何评估回归模型的准确性,包括训练集和测试集的划分、简单实验验证以及交叉验证方法。最后总结了不同模型的适用场景和防止过拟合的策略,帮助读者更好地选择和应用合适的机器学习模型。原创 2025-08-17 16:59:30 · 2 阅读 · 0 评论 -
4、机器学习中的监督学习与回归模型
本文介绍了机器学习中的监督学习方法,重点探讨了回归模型和分类模型的应用与实现。详细分析了k-近邻算法和线性回归的基本原理及其在实际问题中的使用,包括数据加载、清洗、特征工程、模型训练和评估等步骤。通过鸢尾花分类和纽约市出租车费用预测两个实例,展示了如何利用Scikit-Learn构建和评估机器学习模型,并介绍了模型优化和评估指标(如MSE、RMSE、MAE)的计算方法,以及交叉验证技术的运用。原创 2025-08-16 10:03:46 · 4 阅读 · 0 评论 -
3、Machine Learning: Supervised and Unsupervised Learning Demystified
This blog post provides a comprehensive overview of machine learning, focusing on supervised and unsupervised learning. It explores foundational concepts, algorithms, and practical implementations using Python's Scikit-Learn library. Topics include the dis原创 2025-08-15 12:52:50 · 3 阅读 · 0 评论 -
1、开启工程师的机器学习与AI之旅
本文为工程师和软件开发人员提供了一条直观易懂的机器学习与人工智能学习路径。从基础概念入手,详细讲解了机器学习的核心算法、应用场景及实际案例,包括k-Means聚类、k-近邻算法、线性回归、决策树、随机森林、梯度提升机、支持向量机等。同时,深入介绍了深度学习的基础知识和应用,如神经网络、图像分类、人脸识别、自然语言处理等。此外,还涵盖了文本分类、数据降维(如PCA)、模型的部署与运营化(包括Python模型保存、C#调用、Docker容器化)以及Azure认知服务的使用。通过Python和Scikit-Lea原创 2025-08-13 12:18:17 · 3 阅读 · 0 评论