- 检查CUDA 是否可用
import torch
print(torch.cuda.is_available())
DeepSeek (As example)
本机部署参考 DeepSeek-V3
create new env
D:\Workspace\MyPy\deepseek_ai\DeepSeek-V3> C:/Users/Thin/AppData/Local/Programs/Python/Python310/python.exe -m venv deepsee-env source deepseek-env/bin/activate
install dependency
不要用requirment.txt 手动安装里面的包,因为triton 在WIN上不能直接支持pip
(deepsee-env) PS D:\Workspace\MyPy\deepseek_ai\DeepSeek-V3\inference> pip install -r requirements.txt
Triton - WIN 基本装不上 - 各种search 以后
Windows 下安装 triton 教程
pip install https://github.com/woct0rdho/triton-windows/releases/download/v3.1.0-windows.post5/triton-3.1.0-cp310-cp310-win_amd64.whl
然后 pip install
transformers==4.46.3
safetensors==0.4.5
用 huggingface 直接下载模型文件 如何下载huggingface模型到本地
先pip 安装一下huggingface 的库 pip install huggingface_hub
ENV 环境下不成功,直接退出ENV,用原始的python 环境下载
使用上面文章中给的py code
from huggingface_hub import hf_hub_download, list_repo_files
import os
from tqdm import tqdm
# 设置 Hugging Face 仓库路径
repo_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
# 设置本地保存路径
local_dir = "./DeepSeek-R1-Distill-Qwen-32B"
# 创建本地文件夹(如果不存在)
os.makedirs(local_dir, exist_ok=True)
# 获取仓库中的所有文件
file_list = list_repo_files(repo_id=repo_id, repo_type="model")
# 初始化 tqdm 进度条
pbar = tqdm(file_list, desc="下载进度", unit="file", colour="green")
# 逐个下载文件
for file in pbar:
pbar.set_description(f"正在下载: {file}")
hf_hub_download(
repo_id=repo_id,
filename=file,
repo_type="model",
local_dir=local_dir,
local_dir_use_symlinks=False,
resume_download=True,
)
# 关闭进度条
pbar.close()
print(f"模型文件已下载到: {local_dir}")
C:/Users/Thin/AppData/Local/Programs/Python/Python310/python.exe .\download_deepseek_model.py
按照DS自己给的提示,建立.py
修改本地模型路径
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path = "./DeepSeek-R1-Distill-Qwen-14B" # 模型本地路径
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
prompt = "如何做西红柿炒鸡蛋?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
运行 python test.py
出现如下提示
一直pending在这个界面,感觉太慢了,下个1.5B的Model 来测试一下先。速度是可以的,但是内容质量还是很差的。
Searched from OTHER AI anwers:
DeepSeek 警告你未能找到 MSVC 和 Windows SDK,这意味着你的系统缺少一些必要的组件,可能会影响 DeepSeek 的性能或某些功能。
- MSVC (Microsoft Visual C++)
作用: MSVC 是一套由微软提供的开发工具,主要用于编写 C、C++ 和 C++/CLI 代码。它包含编译器、链接器、库和其他工具,是 Windows 平台上重要的开发环境。
DeepSeek 中的作用: DeepSeek 可能使用 MSVC 来编译和优化某些代码,以提高运行效率或实现特定的功能。
- Windows SDK (Software Development Kit)
作用: Windows SDK 包含用于 Windows 应用程序开发的头文件、库、工具和文档。它提供了访问 Windows API 的接口,让开发者能够利用 Windows 的各种功能。
DeepSeek 中的作用: DeepSeek 可能需要 Windows SDK 来调用 Windows API,例如访问文件系统、网络或图形界面等。
缺少 MSVC 和 Windows SDK 的影响
- 性能下降: DeepSeek 在某些任务上的运行速度可能会变慢。
- 功能受限: DeepSeek 的某些功能可能无法正常使用。
- 兼容性问题: DeepSeek 可能无法在某些 Windows 系统上运行。
正确安装 MSVC 和 Windows SDK
下载 Visual Studio: 前往 Microsoft Visual Studio 官网 下载 Visual Studio Community 版本(免费)。
安装组件: 在 Visual Studio 安装程序中,选择“使用 C++ 的桌面开发”工作负载。这将自动安装 MSVC 和 Windows SDK。你也可以在“单个组件”选项卡中选择安装特定版本的 MSVC 和 Windows SDK。
验证安装: 安装完成后,打开 Visual Studio,创建一个新的 C++ 项目,并尝试编译运行。如果一切正常,说明 MSVC 和 Windows SDK 已经成功安装。
注意事项
版本选择: 根据 DeepSeek 的要求选择合适的 MSVC 和 Windows SDK 版本。通常,较新的版本会提供更好的性能和兼容性。
安装路径: 确保将 MSVC 和 Windows SDK 安装在默认路径下,避免 DeepSeek 找不到它们。
环境变量: 安装完成后,可能需要配置环境变量,将 MSVC 和 Windows SDK 的路径添加到系统中。
https://visualstudio.microsoft.com/zh-hans/downloads/
安装CUDA
打开NVIDA任务栏图标,或者直接开始菜单里面开
https://developer.nvidia.com/cuda-toolkit-archive
download and install
CUDA安装教程
DEBUG
- VENV print(torch.cuda.is_available()) == False
虚拟环境下,cuda available 失败了。主要还是没有安装正确的 Torch 版本来支持 CUDA 的版本。(venv_minimind) PS D:\Workspace\MyPY\test\AI> & C:/Users/Thin/AppData/Local/Programs/Python/Python310/python.exe .\test_cuda.py True (venv_minimind) PS D:\Workspace\MyPY\test\AI> python .\test_cuda.py False
因为是根据 requirment 文件安装的 LIB。
检查 torch 版本,重新安装解决问题(venv_minimind) PS D:\Workspace\MyPY\test\AI> pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
References
万字整理:AI绘画突飞猛进的一年半
“生成式技术”正在颠覆人类创作!
超硬核!万字梳理文本生成图像!
原文:OpenAI and the road to text-guided image generation: DALL·E, CLIP, GLIDE, DALL·E 2 (unCLIP)
文本生成图像工作简述1–概念介绍和技术梳理
文本生成图像工作简述2–常用数据集分析与汇总