先看下图
使用1值表示沿着每一行或者列标签模向0.行对应的方法data_test['axis_1']=data_test.loc[:,['number_1','number_2']].apply(lambda x:x.sum(),axis=1)
使用0值表示沿着每一列或行标签\索引值向下执行方法data_test.loc['axis_0']=data_test.loc[:,['number_1','number_2','axis_1']].apply(lambda x:x.sum())
#场景:两个dataFrame,一个是学生的[学号,姓名,班级] [学号,成绩] ,通过学号将两组信息合并到一起
#场景:两个dataFrame,一个是学生的[学号,姓名,班级] [学号,姓名,班级] ,通过学号将两组信息合并到一起
import pandas as pd
# 把文件路径给记录下来
path = 'D:\数学成绩.xls'
path1 = 'D:\语文成绩.xls'
# 把读取到的数据保存下来
datas = pd.read_excel(path)
datas1 = pd.read_excel(path1)
# 按信息查询
shuxue = datas.loc[0:53,['学号','姓名','成绩']]
#newdata
yuwen = datas1.loc[0:53,['学号','姓名','成绩']]
all_amount = pd.merge(shuxue,yuwen,left_on='学号',right_on='学号')
all_amount = all_amount.loc[:,['学号','姓名_x','成绩_x','成绩_y']]
all_amount.columns =['学号','姓名','数学','语文']
all_amount['总分'] = all_amount.iloc[:,2:4].sum(axis=1)
all_amount = all_amount.sort_values(['总分'],ascending=False)
#all_amount.loc['Row_sum'] = all_amount.apply(lambda x: x.sum())
all_amount.loc['axis_0']=all_amount.loc[:,['数学','语文','总分']].apply(lambda x:x.sum())
all_amount
Pandas:对给定列的DataFrame行求和
a b c d
0 1 2 dd 5
1 2 3 ee 9
2 3 4 ff 1
我想添加一列'e',它是列的总和'a','b'和'd'。
你可以只sum设置param axis=1来对行进行求和,这将忽略无数字列:
In [91]:
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df['e'] = df.sum(axis=1)
df
Out[91]:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
如果您只想对特定列求和,则可以创建列的列表并删除您不感兴趣的列:
In [98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:
['a', 'b', 'c']
In [99]:
df['e'] = df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
0 1 2 dd 5 3
1 2 3 ee 9 5
2 3 4 ff 1 7
如果你只有几列要总和,你可以写:
df['e'] = df['a'] + df['b'] + df['d']
这将创建e具有以下值的新列:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
对于较长的列列表,EdChum的答案是首选。
这是一种更简单的方法,使用iloc选择要求和的列:
df['f']=df.iloc[:,0:2].sum(axis=1)
df['g']=df.iloc[:,[0,1]].sum(axis=1)
df['h']=df.iloc[:,[0,3]].sum(axis=1)
生产:
a b c d e f g h
0 1 2 dd 5 8 3 3 6
1 2 3 ee 9 14 5 5 11
2 3 4 ff 1 8 7 7 4
我无法找到一种方法来组合范围和特定列,例如:
df['i']=df.iloc[:,[[0:2],3]].sum(axis=1)
df['i']=df.iloc[:,[0:2,3]].sum(axis=1)