pytorch自定义数据集

这篇博客介绍了如何使用Python从kaggle下载猫狗数据集,并基于此构建一个PyTorch的DogCatDataset类。数据预处理包括调整尺寸、随机裁剪、灰度化等操作,并通过DataLoader加载数据。训练集和验证集分别进行了不同的transform配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自定义的数据集:
从kaggle下载的猫狗数据集

import os
from PIL import Image
from torch.utils.data import Dataset

catdog_label = {"cats": 0, "dogs": 1}
class DogCatDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        """"
        猫狗分类任务的dataset
        data_dir: str,数据集所在路径
        transform: torch.transform, 数据预处理
        """
        # self.label_name = {"cats": 0, "dogs": 1}
        self.data_info = self.get_img_info(data_dir)
        self.transform = transform

    def __getitem__(self, index):
        path_img, label = self.data_info[index]
        img = Image.open(path_img).convert('RGB')

        if self.transform is not None: 
            img = self.transform(img) # 进行transform

        return img, label

    def __len__(self):
        return len(self.data_info)

    @staticmethod
    def get_img_info(data_dir):
        data_info = list()
        for root, dirs, _ in os.walk(data_dir):
            # 遍历类别
            for sub_dir in dirs:
                img_names = os.listdir(os.path.join(root, sub_dir))
                img_names = list(filter(lambda x: x.endswith('.jpg'), img_names))

                # 遍历图片
                for i in range(len(img_names)):
                    img_name = img_names[i]
                    path_img = os.path.join(root, sub_dir, img_name)
                    label = catdog_label[sub_dir]
                    data_info.append((path_img, int(label)))
        return data_info

dataset 实际是根据索引(路径)获取图片和标签
调用dataset实现数据读取:

from torchvision import transforms
from DogCatDataset import DogCatDataset
import os
from torch.utils.data import DataLoader

# 文件夹路径
split_dir = 'DogCatDataset'
train_dir = os.path.join(split_dir, "training_set")
valid_dir = os.path.join(split_dir, 'test_set')

# transform
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

data_transform = {
    'train': transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.RandomCrop(32, padding=4),
        transforms.RandomGrayscale(p=0.9),
        transforms.ToTensor(),
        transforms.Normalize(norm_mean, norm_std)]),
    'valid': transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(norm_mean, norm_std)])}

# 构建dataset
train_dataset = DogCatDataset(data_dir=train_dir, transform=data_transform['train'])
valid_dataset = DogCatDataset(data_dir=valid_dir, transform=data_transform['valid'])

# 构建DataLoder
train_loader = DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=16, shuffle=False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值